Loading…

An Algorithm for Ordinal Classification Based on Pairwise Comparison

Ordinal classification problems are applied in many fields. In the field of multivariate statistical analysis, these tasks are referred to as ordinal regression problems. In the field of management decision-making, they are known as multi-criteria decision analyses or sorting problems. This paper in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of classification 2020-04, Vol.37 (1), p.158-179
Main Authors: Yang, Yunli, Chen, Baiyu, Yang, Zhouwang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-6651fdfc4f3f32e079e910f12617f1de23b9c750b07f143d98878324ae5282503
cites cdi_FETCH-LOGICAL-c344t-6651fdfc4f3f32e079e910f12617f1de23b9c750b07f143d98878324ae5282503
container_end_page 179
container_issue 1
container_start_page 158
container_title Journal of classification
container_volume 37
creator Yang, Yunli
Chen, Baiyu
Yang, Zhouwang
description Ordinal classification problems are applied in many fields. In the field of multivariate statistical analysis, these tasks are referred to as ordinal regression problems. In the field of management decision-making, they are known as multi-criteria decision analyses or sorting problems. This paper introduces the PairCode algorithm for ordinal classification with small sample sizes, which is based on a pairwise comparison strategy. In addition, this work outlines how to use pairwise comparisons to transform ordinal classifications into disordered regressions and how to transform the results of disordered regressions back to their original ordinal categories. Some effective strategies have been put forward, such as designing a class-label encoding matrix for the pairwise comparison, balancing samples, training classifiers, and predicting new samples. In numerical experiments, our algorithm (PairCode) is compared with the ordinal logistic regressions (LogisticOP) (Hu et al., IEEE Transactions on Knowledge and Data Engineering, 24 (11), 2052–2064, 2012 ; Harrell 2015b ), SVMOP (Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ; Leathart et al. 2016 ), SVORIM (Chu and Sathiya Keerthi, Neural Computation, 19 (3), 792–815 2007 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ), SVOREX (Chu and Sathiya Keerthi, Neural Computation, 19 (3), 792–815 2007 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ), and ELMOP (Deng et al., Neurocomputing, 74 (1), 447–456, 2010 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ). The results show that the PairCode algorithm performs better and is relatively stable as reflected by the correct classification rate (CCR), the mean absolute error (MAE), and the maximum MAE value (MMAE). However, the computing speed of the PairCode algorithm for classification is slightly slow and therefore warrants further study to improve the speed.
doi_str_mv 10.1007/s00357-019-9311-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2413579809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199611427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6651fdfc4f3f32e079e910f12617f1de23b9c750b07f143d98878324ae5282503</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz9FMkibNca2fsLAe9ByybbJm6TY16SL-e7NU8KSnmYHnHWYehC6BXAMh8iYRwkqJCSisGADmR2gGnFEMjLNjNCMgBeZUVKfoLKUtyRkh5AzdLfpi0W1C9OP7rnAhFqvY-t50Rd2ZlLzzjRl96Itbk2xb5ObF-Pjpky3qsBtM9Cn05-jEmS7Zi586R28P96_1E16uHp_rxRI3jPMRC1GCa13DHXOMWiKVVUAcUAHSQWspW6tGlmRN8shZq6pKVoxyY0ta0ZKwObqa9g4xfOxtGvU27GM-NmnKIf-vKqL-pUApAcCpzBRMVBNDStE6PUS_M_FLA9EHpXpSqrNSfVCqec7QKZMy229s_N38d-gbmXV2RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199611427</pqid></control><display><type>article</type><title>An Algorithm for Ordinal Classification Based on Pairwise Comparison</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Springer Nature</source><creator>Yang, Yunli ; Chen, Baiyu ; Yang, Zhouwang</creator><creatorcontrib>Yang, Yunli ; Chen, Baiyu ; Yang, Zhouwang</creatorcontrib><description>Ordinal classification problems are applied in many fields. In the field of multivariate statistical analysis, these tasks are referred to as ordinal regression problems. In the field of management decision-making, they are known as multi-criteria decision analyses or sorting problems. This paper introduces the PairCode algorithm for ordinal classification with small sample sizes, which is based on a pairwise comparison strategy. In addition, this work outlines how to use pairwise comparisons to transform ordinal classifications into disordered regressions and how to transform the results of disordered regressions back to their original ordinal categories. Some effective strategies have been put forward, such as designing a class-label encoding matrix for the pairwise comparison, balancing samples, training classifiers, and predicting new samples. In numerical experiments, our algorithm (PairCode) is compared with the ordinal logistic regressions (LogisticOP) (Hu et al., IEEE Transactions on Knowledge and Data Engineering, 24 (11), 2052–2064, 2012 ; Harrell 2015b ), SVMOP (Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ; Leathart et al. 2016 ), SVORIM (Chu and Sathiya Keerthi, Neural Computation, 19 (3), 792–815 2007 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ), SVOREX (Chu and Sathiya Keerthi, Neural Computation, 19 (3), 792–815 2007 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ), and ELMOP (Deng et al., Neurocomputing, 74 (1), 447–456, 2010 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ). The results show that the PairCode algorithm performs better and is relatively stable as reflected by the correct classification rate (CCR), the mean absolute error (MAE), and the maximum MAE value (MMAE). However, the computing speed of the PairCode algorithm for classification is slightly slow and therefore warrants further study to improve the speed.</description><identifier>ISSN: 0176-4268</identifier><identifier>EISSN: 1432-1343</identifier><identifier>DOI: 10.1007/s00357-019-9311-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bioinformatics ; Classification ; Computation ; Decision analysis ; Decision making ; Engineering ; Error correction ; Marketing ; Mathematics and Statistics ; Multiple criterion ; Multivariate statistical analysis ; Numerical prediction ; Pattern Recognition ; Psychometrics ; Regression analysis ; Signal,Image and Speech Processing ; Sorting algorithms ; Statistical analysis ; Statistical methods ; Statistical Theory and Methods ; Statistics</subject><ispartof>Journal of classification, 2020-04, Vol.37 (1), p.158-179</ispartof><rights>The Classification Society 2019</rights><rights>Journal of Classification is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>The Classification Society 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6651fdfc4f3f32e079e910f12617f1de23b9c750b07f143d98878324ae5282503</citedby><cites>FETCH-LOGICAL-c344t-6651fdfc4f3f32e079e910f12617f1de23b9c750b07f143d98878324ae5282503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,34133</link.rule.ids></links><search><creatorcontrib>Yang, Yunli</creatorcontrib><creatorcontrib>Chen, Baiyu</creatorcontrib><creatorcontrib>Yang, Zhouwang</creatorcontrib><title>An Algorithm for Ordinal Classification Based on Pairwise Comparison</title><title>Journal of classification</title><addtitle>J Classif</addtitle><description>Ordinal classification problems are applied in many fields. In the field of multivariate statistical analysis, these tasks are referred to as ordinal regression problems. In the field of management decision-making, they are known as multi-criteria decision analyses or sorting problems. This paper introduces the PairCode algorithm for ordinal classification with small sample sizes, which is based on a pairwise comparison strategy. In addition, this work outlines how to use pairwise comparisons to transform ordinal classifications into disordered regressions and how to transform the results of disordered regressions back to their original ordinal categories. Some effective strategies have been put forward, such as designing a class-label encoding matrix for the pairwise comparison, balancing samples, training classifiers, and predicting new samples. In numerical experiments, our algorithm (PairCode) is compared with the ordinal logistic regressions (LogisticOP) (Hu et al., IEEE Transactions on Knowledge and Data Engineering, 24 (11), 2052–2064, 2012 ; Harrell 2015b ), SVMOP (Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ; Leathart et al. 2016 ), SVORIM (Chu and Sathiya Keerthi, Neural Computation, 19 (3), 792–815 2007 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ), SVOREX (Chu and Sathiya Keerthi, Neural Computation, 19 (3), 792–815 2007 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ), and ELMOP (Deng et al., Neurocomputing, 74 (1), 447–456, 2010 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ). The results show that the PairCode algorithm performs better and is relatively stable as reflected by the correct classification rate (CCR), the mean absolute error (MAE), and the maximum MAE value (MMAE). However, the computing speed of the PairCode algorithm for classification is slightly slow and therefore warrants further study to improve the speed.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Classification</subject><subject>Computation</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Error correction</subject><subject>Marketing</subject><subject>Mathematics and Statistics</subject><subject>Multiple criterion</subject><subject>Multivariate statistical analysis</subject><subject>Numerical prediction</subject><subject>Pattern Recognition</subject><subject>Psychometrics</subject><subject>Regression analysis</subject><subject>Signal,Image and Speech Processing</subject><subject>Sorting algorithms</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>0176-4268</issn><issn>1432-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz9FMkibNca2fsLAe9ByybbJm6TY16SL-e7NU8KSnmYHnHWYehC6BXAMh8iYRwkqJCSisGADmR2gGnFEMjLNjNCMgBeZUVKfoLKUtyRkh5AzdLfpi0W1C9OP7rnAhFqvY-t50Rd2ZlLzzjRl96Itbk2xb5ObF-Pjpky3qsBtM9Cn05-jEmS7Zi586R28P96_1E16uHp_rxRI3jPMRC1GCa13DHXOMWiKVVUAcUAHSQWspW6tGlmRN8shZq6pKVoxyY0ta0ZKwObqa9g4xfOxtGvU27GM-NmnKIf-vKqL-pUApAcCpzBRMVBNDStE6PUS_M_FLA9EHpXpSqrNSfVCqec7QKZMy229s_N38d-gbmXV2RQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yang, Yunli</creator><creator>Chen, Baiyu</creator><creator>Yang, Zhouwang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope></search><sort><creationdate>20200401</creationdate><title>An Algorithm for Ordinal Classification Based on Pairwise Comparison</title><author>Yang, Yunli ; Chen, Baiyu ; Yang, Zhouwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6651fdfc4f3f32e079e910f12617f1de23b9c750b07f143d98878324ae5282503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Classification</topic><topic>Computation</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Error correction</topic><topic>Marketing</topic><topic>Mathematics and Statistics</topic><topic>Multiple criterion</topic><topic>Multivariate statistical analysis</topic><topic>Numerical prediction</topic><topic>Pattern Recognition</topic><topic>Psychometrics</topic><topic>Regression analysis</topic><topic>Signal,Image and Speech Processing</topic><topic>Sorting algorithms</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yunli</creatorcontrib><creatorcontrib>Chen, Baiyu</creatorcontrib><creatorcontrib>Yang, Zhouwang</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of classification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yunli</au><au>Chen, Baiyu</au><au>Yang, Zhouwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algorithm for Ordinal Classification Based on Pairwise Comparison</atitle><jtitle>Journal of classification</jtitle><stitle>J Classif</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>37</volume><issue>1</issue><spage>158</spage><epage>179</epage><pages>158-179</pages><issn>0176-4268</issn><eissn>1432-1343</eissn><abstract>Ordinal classification problems are applied in many fields. In the field of multivariate statistical analysis, these tasks are referred to as ordinal regression problems. In the field of management decision-making, they are known as multi-criteria decision analyses or sorting problems. This paper introduces the PairCode algorithm for ordinal classification with small sample sizes, which is based on a pairwise comparison strategy. In addition, this work outlines how to use pairwise comparisons to transform ordinal classifications into disordered regressions and how to transform the results of disordered regressions back to their original ordinal categories. Some effective strategies have been put forward, such as designing a class-label encoding matrix for the pairwise comparison, balancing samples, training classifiers, and predicting new samples. In numerical experiments, our algorithm (PairCode) is compared with the ordinal logistic regressions (LogisticOP) (Hu et al., IEEE Transactions on Knowledge and Data Engineering, 24 (11), 2052–2064, 2012 ; Harrell 2015b ), SVMOP (Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ; Leathart et al. 2016 ), SVORIM (Chu and Sathiya Keerthi, Neural Computation, 19 (3), 792–815 2007 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ), SVOREX (Chu and Sathiya Keerthi, Neural Computation, 19 (3), 792–815 2007 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ), and ELMOP (Deng et al., Neurocomputing, 74 (1), 447–456, 2010 ; Gutiérrez et al., IEEE Transactions on Knowledge and Data Engineering, 28 (1), 127–146, 2016 ). The results show that the PairCode algorithm performs better and is relatively stable as reflected by the correct classification rate (CCR), the mean absolute error (MAE), and the maximum MAE value (MMAE). However, the computing speed of the PairCode algorithm for classification is slightly slow and therefore warrants further study to improve the speed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00357-019-9311-4</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0176-4268
ispartof Journal of classification, 2020-04, Vol.37 (1), p.158-179
issn 0176-4268
1432-1343
language eng
recordid cdi_proquest_journals_2413579809
source Library & Information Science Abstracts (LISA); Springer Nature
subjects Algorithms
Bioinformatics
Classification
Computation
Decision analysis
Decision making
Engineering
Error correction
Marketing
Mathematics and Statistics
Multiple criterion
Multivariate statistical analysis
Numerical prediction
Pattern Recognition
Psychometrics
Regression analysis
Signal,Image and Speech Processing
Sorting algorithms
Statistical analysis
Statistical methods
Statistical Theory and Methods
Statistics
title An Algorithm for Ordinal Classification Based on Pairwise Comparison
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algorithm%20for%20Ordinal%20Classification%20Based%20on%20Pairwise%20Comparison&rft.jtitle=Journal%20of%20classification&rft.au=Yang,%20Yunli&rft.date=2020-04-01&rft.volume=37&rft.issue=1&rft.spage=158&rft.epage=179&rft.pages=158-179&rft.issn=0176-4268&rft.eissn=1432-1343&rft_id=info:doi/10.1007/s00357-019-9311-4&rft_dat=%3Cproquest_cross%3E2199611427%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-6651fdfc4f3f32e079e910f12617f1de23b9c750b07f143d98878324ae5282503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2199611427&rft_id=info:pmid/&rfr_iscdi=true