Loading…

Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid

A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting two-dimensional (2D) system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organize themselves in a periodic array in order to min...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-06
Main Authors: Ma, Meng K, Villegas Rosales, K A, Deng, H, Chung, Y J, Pfeiffer, L N, West, K W, Baldwin, K W, Winkler, R, Shayegan, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ma, Meng K
Villegas Rosales, K A
Deng, H
Chung, Y J
Pfeiffer, L N
West, K W
Baldwin, K W
Winkler, R
Shayegan, M
description A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting two-dimensional (2D) system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organize themselves in a periodic array in order to minimize their Coulomb repulsion energy. In low-disorder 2D electron systems confined to modulation-doped GaAs heterostructures, signatures of a magnetic-field-induced WS appear at low temperatures and very small Landau level filling factors (\(\nu\simeq1/5\)). In dilute GaAs 2D \textit{hole} systems, on the other hand, thanks to the larger hole effective mass and the ensuing Landau level mixing, the WS forms at relatively higher fillings (\(\nu\simeq1/3\)). Here we report our measurements of the fundamental temperature vs. filling phase diagram for the 2D holes' WS-liquid \textit{thermal melting}. Moreover, via changing the 2D hole density, we also probe their Landau level mixing vs. filling WS-liquid \textit{quantum melting} phase diagram. We find our data to be in good agreement with the results of very recent calculations, although intriguing subtleties remain.
doi_str_mv 10.48550/arxiv.2006.07509
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2413787398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413787398</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-def9f2982142ebd7a0b141f7e2515ebaf98977bbc79860ddb0bc84eeec1de05e3</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wF3A9dSbZNIkSym-oOBmwGW5mdy0KfNokxnx8y3o6sBZnMPYg4B1bbWGJ8w_6XstATZrMBrcDVtIpURlaynv2KqUEwDIjZFaqwVrmiPlHjuOQ-CXGYdp7nlP3ZSGAz8fsRAPCQ8Z-8LjmDnyHg8DTamtYqIuVGkIc0uBf6WrzryMXQr37DZiV2j1zyVrXl-a7Xu1-3z72D7vKtTSVoGii9JZKWpJPhgEL2oRDUktNHmMzjpjvG-NsxsIwYNvbU1ErQgEmtSSPf5lz3m8zFSm_Wmc83A97mUtlLFGOat-AcxhUyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413787398</pqid></control><display><type>article</type><title>Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid</title><source>Publicly Available Content Database</source><creator>Ma, Meng K ; Villegas Rosales, K A ; Deng, H ; Chung, Y J ; Pfeiffer, L N ; West, K W ; Baldwin, K W ; Winkler, R ; Shayegan, M</creator><creatorcontrib>Ma, Meng K ; Villegas Rosales, K A ; Deng, H ; Chung, Y J ; Pfeiffer, L N ; West, K W ; Baldwin, K W ; Winkler, R ; Shayegan, M</creatorcontrib><description>A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting two-dimensional (2D) system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organize themselves in a periodic array in order to minimize their Coulomb repulsion energy. In low-disorder 2D electron systems confined to modulation-doped GaAs heterostructures, signatures of a magnetic-field-induced WS appear at low temperatures and very small Landau level filling factors (\(\nu\simeq1/5\)). In dilute GaAs 2D \textit{hole} systems, on the other hand, thanks to the larger hole effective mass and the ensuing Landau level mixing, the WS forms at relatively higher fillings (\(\nu\simeq1/3\)). Here we report our measurements of the fundamental temperature vs. filling phase diagram for the 2D holes' WS-liquid \textit{thermal melting}. Moreover, via changing the 2D hole density, we also probe their Landau level mixing vs. filling WS-liquid \textit{quantum melting} phase diagram. We find our data to be in good agreement with the results of very recent calculations, although intriguing subtleties remain.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2006.07509</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Energy conservation ; Fermions ; Heterostructures ; Hole density ; Low temperature ; Melting ; Phase diagrams ; System effectiveness</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2413787398?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ma, Meng K</creatorcontrib><creatorcontrib>Villegas Rosales, K A</creatorcontrib><creatorcontrib>Deng, H</creatorcontrib><creatorcontrib>Chung, Y J</creatorcontrib><creatorcontrib>Pfeiffer, L N</creatorcontrib><creatorcontrib>West, K W</creatorcontrib><creatorcontrib>Baldwin, K W</creatorcontrib><creatorcontrib>Winkler, R</creatorcontrib><creatorcontrib>Shayegan, M</creatorcontrib><title>Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid</title><title>arXiv.org</title><description>A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting two-dimensional (2D) system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organize themselves in a periodic array in order to minimize their Coulomb repulsion energy. In low-disorder 2D electron systems confined to modulation-doped GaAs heterostructures, signatures of a magnetic-field-induced WS appear at low temperatures and very small Landau level filling factors (\(\nu\simeq1/5\)). In dilute GaAs 2D \textit{hole} systems, on the other hand, thanks to the larger hole effective mass and the ensuing Landau level mixing, the WS forms at relatively higher fillings (\(\nu\simeq1/3\)). Here we report our measurements of the fundamental temperature vs. filling phase diagram for the 2D holes' WS-liquid \textit{thermal melting}. Moreover, via changing the 2D hole density, we also probe their Landau level mixing vs. filling WS-liquid \textit{quantum melting} phase diagram. We find our data to be in good agreement with the results of very recent calculations, although intriguing subtleties remain.</description><subject>Energy conservation</subject><subject>Fermions</subject><subject>Heterostructures</subject><subject>Hole density</subject><subject>Low temperature</subject><subject>Melting</subject><subject>Phase diagrams</subject><subject>System effectiveness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wF3A9dSbZNIkSym-oOBmwGW5mdy0KfNokxnx8y3o6sBZnMPYg4B1bbWGJ8w_6XstATZrMBrcDVtIpURlaynv2KqUEwDIjZFaqwVrmiPlHjuOQ-CXGYdp7nlP3ZSGAz8fsRAPCQ8Z-8LjmDnyHg8DTamtYqIuVGkIc0uBf6WrzryMXQr37DZiV2j1zyVrXl-a7Xu1-3z72D7vKtTSVoGii9JZKWpJPhgEL2oRDUktNHmMzjpjvG-NsxsIwYNvbU1ErQgEmtSSPf5lz3m8zFSm_Wmc83A97mUtlLFGOat-AcxhUyk</recordid><startdate>20200612</startdate><enddate>20200612</enddate><creator>Ma, Meng K</creator><creator>Villegas Rosales, K A</creator><creator>Deng, H</creator><creator>Chung, Y J</creator><creator>Pfeiffer, L N</creator><creator>West, K W</creator><creator>Baldwin, K W</creator><creator>Winkler, R</creator><creator>Shayegan, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200612</creationdate><title>Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid</title><author>Ma, Meng K ; Villegas Rosales, K A ; Deng, H ; Chung, Y J ; Pfeiffer, L N ; West, K W ; Baldwin, K W ; Winkler, R ; Shayegan, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-def9f2982142ebd7a0b141f7e2515ebaf98977bbc79860ddb0bc84eeec1de05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy conservation</topic><topic>Fermions</topic><topic>Heterostructures</topic><topic>Hole density</topic><topic>Low temperature</topic><topic>Melting</topic><topic>Phase diagrams</topic><topic>System effectiveness</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Meng K</creatorcontrib><creatorcontrib>Villegas Rosales, K A</creatorcontrib><creatorcontrib>Deng, H</creatorcontrib><creatorcontrib>Chung, Y J</creatorcontrib><creatorcontrib>Pfeiffer, L N</creatorcontrib><creatorcontrib>West, K W</creatorcontrib><creatorcontrib>Baldwin, K W</creatorcontrib><creatorcontrib>Winkler, R</creatorcontrib><creatorcontrib>Shayegan, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Meng K</au><au>Villegas Rosales, K A</au><au>Deng, H</au><au>Chung, Y J</au><au>Pfeiffer, L N</au><au>West, K W</au><au>Baldwin, K W</au><au>Winkler, R</au><au>Shayegan, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid</atitle><jtitle>arXiv.org</jtitle><date>2020-06-12</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting two-dimensional (2D) system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organize themselves in a periodic array in order to minimize their Coulomb repulsion energy. In low-disorder 2D electron systems confined to modulation-doped GaAs heterostructures, signatures of a magnetic-field-induced WS appear at low temperatures and very small Landau level filling factors (\(\nu\simeq1/5\)). In dilute GaAs 2D \textit{hole} systems, on the other hand, thanks to the larger hole effective mass and the ensuing Landau level mixing, the WS forms at relatively higher fillings (\(\nu\simeq1/3\)). Here we report our measurements of the fundamental temperature vs. filling phase diagram for the 2D holes' WS-liquid \textit{thermal melting}. Moreover, via changing the 2D hole density, we also probe their Landau level mixing vs. filling WS-liquid \textit{quantum melting} phase diagram. We find our data to be in good agreement with the results of very recent calculations, although intriguing subtleties remain.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2006.07509</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2413787398
source Publicly Available Content Database
subjects Energy conservation
Fermions
Heterostructures
Hole density
Low temperature
Melting
Phase diagrams
System effectiveness
title Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20quantum%20melting%20phase%20diagrams%20for%20a%20magnetic-field-induced%20Wigner%20solid&rft.jtitle=arXiv.org&rft.au=Ma,%20Meng%20K&rft.date=2020-06-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2006.07509&rft_dat=%3Cproquest%3E2413787398%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-def9f2982142ebd7a0b141f7e2515ebaf98977bbc79860ddb0bc84eeec1de05e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2413787398&rft_id=info:pmid/&rfr_iscdi=true