Loading…
Synthetic investigation of competing magnetic interactions in 2D metal-chloranilate radical frameworks
The discovery of emergent materials lies at the intersection of chemistry and condensed matter physics. Synthetic chemistry offers a pathway to create materials with the desired physical and electronic structures that support fundamentally new properties. Metal-organic frameworks are a promising pla...
Saved in:
Published in: | Chemical science (Cambridge) 2020-06, Vol.11 (23), p.5922-5928 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-4275b3306236a41e1b6fa58e12b318f631e94a345fc6c14183999092b61eed6b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-4275b3306236a41e1b6fa58e12b318f631e94a345fc6c14183999092b61eed6b3 |
container_end_page | 5928 |
container_issue | 23 |
container_start_page | 5922 |
container_title | Chemical science (Cambridge) |
container_volume | 11 |
creator | Collins, Kelsey A Saballos, Richard J Fataftah, Majed S Puggioni, Danilo Rondinelli, James M Freedman, Danna E |
description | The discovery of emergent materials lies at the intersection of chemistry and condensed matter physics. Synthetic chemistry offers a pathway to create materials with the desired physical and electronic structures that support fundamentally new properties. Metal-organic frameworks are a promising platform for bottom-up chemical design of new materials, owing to their inherent chemical predictability and tunability relative to traditional solid-state materials. Herein, we describe the synthesis and magnetic characterization of a new 2,5-dihydroxy-1,4-benzoquinone based material, (NMe
2
H
2
)
3.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
1
), which features radical-based electronic spins on the sites of a kagomé lattice, a geometric lattice known to engender exotic electronic properties. Vibrational and electronic spectroscopies, in combination with magnetic susceptibility measurements, revealed
1
exhibits mixed valency between the radical-bearing trianionic and diamagnetic tetraanionic oxidation states of the ligand. This unpaired electron density on the ligand forms a partially occupied kagomé lattice where approximately 85% of the lattice sites are occupied with an
S
= ½ spin. We found that gallium mediates ferromagnetic coupling between ligand spins, creating a ferromagnetic kagomé lattice. By modulation of the interlayer spacing
via
post-synthetic cation metathesis of
1
to (NMe
4
)
3.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
2
) and (NEt
4
)
2
(NMe
4
)
1.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
3
), we determined the nature of the magnetic coupling between neighboring planes is antiferromagnetic. Additionally, we determined the role of the metal in mediating this magnetic coupling by comparison of
2
with the In
3+
analogue, (NMe
4
)
3.5
In
2
(C
6
O
4
Cl
2
)
3
(
4
), and we found that Ga
3+
supports stronger superexchange coupling between ligand-based spins than In
3+
. The combination of intraplanar ferromagnetic coupling and interplanar antiferromagnetic coupling exchange interactions suggests these are promising materials to host topological phenomena.
2D metal-organic frameworks provide insight into kagomé spin physics. |
doi_str_mv | 10.1039/d0sc01994a |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2413911517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2538049002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-4275b3306236a41e1b6fa58e12b318f631e94a345fc6c14183999092b61eed6b3</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_AgFltqL96FES9FGJuXH7OTi1C2_oJCD9VzeJNJdlNnkjXJVvrfm7rLih6aSxLehy95eYS8AvoeKFcXI82GglICn5ETRgW0neTq-eHM6DE5y_mO1sU5SLZ4QY65oErQXp4Qd_sQytoWbxof7m0ufoXFx9BE15g4b2olrJoZV2Fvik1oHkWul4ZdNbMtOLVmPcWEwU9YbJNw9AanxiWc7a-YfuSX5MjhlO3Zfj8l3z99_Lb80l7ffP66vLxujeBQWsEWcuCcdox3KMDC0DmUvQU2cOhdx8HWRrmQznQGBPRcKUUVGzqwduwGfko-7HI322G2o7GhJJz0JvkZ04OO6PW_leDXehXvdQ9Ssb6vAef7gBR_but_6NlnY6cJg43brJnkPRWKUlbp2__oXdymUNvTTABXABIWVb3bKZNizsm6w2OA6scJ6it6u_wzwcuK3-xwyubg_k5Yb0ZXzeunDP8N8x6iog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413911517</pqid></control><display><type>article</type><title>Synthetic investigation of competing magnetic interactions in 2D metal-chloranilate radical frameworks</title><source>PubMed Central (Open access)</source><creator>Collins, Kelsey A ; Saballos, Richard J ; Fataftah, Majed S ; Puggioni, Danilo ; Rondinelli, James M ; Freedman, Danna E</creator><creatorcontrib>Collins, Kelsey A ; Saballos, Richard J ; Fataftah, Majed S ; Puggioni, Danilo ; Rondinelli, James M ; Freedman, Danna E</creatorcontrib><description>The discovery of emergent materials lies at the intersection of chemistry and condensed matter physics. Synthetic chemistry offers a pathway to create materials with the desired physical and electronic structures that support fundamentally new properties. Metal-organic frameworks are a promising platform for bottom-up chemical design of new materials, owing to their inherent chemical predictability and tunability relative to traditional solid-state materials. Herein, we describe the synthesis and magnetic characterization of a new 2,5-dihydroxy-1,4-benzoquinone based material, (NMe
2
H
2
)
3.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
1
), which features radical-based electronic spins on the sites of a kagomé lattice, a geometric lattice known to engender exotic electronic properties. Vibrational and electronic spectroscopies, in combination with magnetic susceptibility measurements, revealed
1
exhibits mixed valency between the radical-bearing trianionic and diamagnetic tetraanionic oxidation states of the ligand. This unpaired electron density on the ligand forms a partially occupied kagomé lattice where approximately 85% of the lattice sites are occupied with an
S
= ½ spin. We found that gallium mediates ferromagnetic coupling between ligand spins, creating a ferromagnetic kagomé lattice. By modulation of the interlayer spacing
via
post-synthetic cation metathesis of
1
to (NMe
4
)
3.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
2
) and (NEt
4
)
2
(NMe
4
)
1.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
3
), we determined the nature of the magnetic coupling between neighboring planes is antiferromagnetic. Additionally, we determined the role of the metal in mediating this magnetic coupling by comparison of
2
with the In
3+
analogue, (NMe
4
)
3.5
In
2
(C
6
O
4
Cl
2
)
3
(
4
), and we found that Ga
3+
supports stronger superexchange coupling between ligand-based spins than In
3+
. The combination of intraplanar ferromagnetic coupling and interplanar antiferromagnetic coupling exchange interactions suggests these are promising materials to host topological phenomena.
2D metal-organic frameworks provide insight into kagomé spin physics.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc01994a</identifier><identifier>PMID: 34094085</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiferromagnetism ; Benzoquinone ; Chemistry ; Condensed matter physics ; Coupling ; Crystallography ; Diamagnetism ; Electron density ; Ferromagnetism ; Gallium ; Interlayers ; Lattice sites ; Ligands ; Magnetic permeability ; Magnetic properties ; Metal-organic frameworks ; Metathesis ; Oxidation</subject><ispartof>Chemical science (Cambridge), 2020-06, Vol.11 (23), p.5922-5928</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-4275b3306236a41e1b6fa58e12b318f631e94a345fc6c14183999092b61eed6b3</citedby><cites>FETCH-LOGICAL-c431t-4275b3306236a41e1b6fa58e12b318f631e94a345fc6c14183999092b61eed6b3</cites><orcidid>0000-0002-1742-2854 ; 0000-0003-0508-2175 ; 0000-0002-2128-4191 ; 0000-0002-2579-8835 ; 0000-0002-9202-8179 ; 0000-0002-7386-9220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159288/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159288/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Collins, Kelsey A</creatorcontrib><creatorcontrib>Saballos, Richard J</creatorcontrib><creatorcontrib>Fataftah, Majed S</creatorcontrib><creatorcontrib>Puggioni, Danilo</creatorcontrib><creatorcontrib>Rondinelli, James M</creatorcontrib><creatorcontrib>Freedman, Danna E</creatorcontrib><title>Synthetic investigation of competing magnetic interactions in 2D metal-chloranilate radical frameworks</title><title>Chemical science (Cambridge)</title><description>The discovery of emergent materials lies at the intersection of chemistry and condensed matter physics. Synthetic chemistry offers a pathway to create materials with the desired physical and electronic structures that support fundamentally new properties. Metal-organic frameworks are a promising platform for bottom-up chemical design of new materials, owing to their inherent chemical predictability and tunability relative to traditional solid-state materials. Herein, we describe the synthesis and magnetic characterization of a new 2,5-dihydroxy-1,4-benzoquinone based material, (NMe
2
H
2
)
3.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
1
), which features radical-based electronic spins on the sites of a kagomé lattice, a geometric lattice known to engender exotic electronic properties. Vibrational and electronic spectroscopies, in combination with magnetic susceptibility measurements, revealed
1
exhibits mixed valency between the radical-bearing trianionic and diamagnetic tetraanionic oxidation states of the ligand. This unpaired electron density on the ligand forms a partially occupied kagomé lattice where approximately 85% of the lattice sites are occupied with an
S
= ½ spin. We found that gallium mediates ferromagnetic coupling between ligand spins, creating a ferromagnetic kagomé lattice. By modulation of the interlayer spacing
via
post-synthetic cation metathesis of
1
to (NMe
4
)
3.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
2
) and (NEt
4
)
2
(NMe
4
)
1.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
3
), we determined the nature of the magnetic coupling between neighboring planes is antiferromagnetic. Additionally, we determined the role of the metal in mediating this magnetic coupling by comparison of
2
with the In
3+
analogue, (NMe
4
)
3.5
In
2
(C
6
O
4
Cl
2
)
3
(
4
), and we found that Ga
3+
supports stronger superexchange coupling between ligand-based spins than In
3+
. The combination of intraplanar ferromagnetic coupling and interplanar antiferromagnetic coupling exchange interactions suggests these are promising materials to host topological phenomena.
2D metal-organic frameworks provide insight into kagomé spin physics.</description><subject>Antiferromagnetism</subject><subject>Benzoquinone</subject><subject>Chemistry</subject><subject>Condensed matter physics</subject><subject>Coupling</subject><subject>Crystallography</subject><subject>Diamagnetism</subject><subject>Electron density</subject><subject>Ferromagnetism</subject><subject>Gallium</subject><subject>Interlayers</subject><subject>Lattice sites</subject><subject>Ligands</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Metal-organic frameworks</subject><subject>Metathesis</subject><subject>Oxidation</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUB_AgFltqL96FES9FGJuXH7OTi1C2_oJCD9VzeJNJdlNnkjXJVvrfm7rLih6aSxLehy95eYS8AvoeKFcXI82GglICn5ETRgW0neTq-eHM6DE5y_mO1sU5SLZ4QY65oErQXp4Qd_sQytoWbxof7m0ufoXFx9BE15g4b2olrJoZV2Fvik1oHkWul4ZdNbMtOLVmPcWEwU9YbJNw9AanxiWc7a-YfuSX5MjhlO3Zfj8l3z99_Lb80l7ffP66vLxujeBQWsEWcuCcdox3KMDC0DmUvQU2cOhdx8HWRrmQznQGBPRcKUUVGzqwduwGfko-7HI322G2o7GhJJz0JvkZ04OO6PW_leDXehXvdQ9Ssb6vAef7gBR_but_6NlnY6cJg43brJnkPRWKUlbp2__oXdymUNvTTABXABIWVb3bKZNizsm6w2OA6scJ6it6u_wzwcuK3-xwyubg_k5Yb0ZXzeunDP8N8x6iog</recordid><startdate>20200621</startdate><enddate>20200621</enddate><creator>Collins, Kelsey A</creator><creator>Saballos, Richard J</creator><creator>Fataftah, Majed S</creator><creator>Puggioni, Danilo</creator><creator>Rondinelli, James M</creator><creator>Freedman, Danna E</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1742-2854</orcidid><orcidid>https://orcid.org/0000-0003-0508-2175</orcidid><orcidid>https://orcid.org/0000-0002-2128-4191</orcidid><orcidid>https://orcid.org/0000-0002-2579-8835</orcidid><orcidid>https://orcid.org/0000-0002-9202-8179</orcidid><orcidid>https://orcid.org/0000-0002-7386-9220</orcidid></search><sort><creationdate>20200621</creationdate><title>Synthetic investigation of competing magnetic interactions in 2D metal-chloranilate radical frameworks</title><author>Collins, Kelsey A ; Saballos, Richard J ; Fataftah, Majed S ; Puggioni, Danilo ; Rondinelli, James M ; Freedman, Danna E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-4275b3306236a41e1b6fa58e12b318f631e94a345fc6c14183999092b61eed6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiferromagnetism</topic><topic>Benzoquinone</topic><topic>Chemistry</topic><topic>Condensed matter physics</topic><topic>Coupling</topic><topic>Crystallography</topic><topic>Diamagnetism</topic><topic>Electron density</topic><topic>Ferromagnetism</topic><topic>Gallium</topic><topic>Interlayers</topic><topic>Lattice sites</topic><topic>Ligands</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Metal-organic frameworks</topic><topic>Metathesis</topic><topic>Oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Kelsey A</creatorcontrib><creatorcontrib>Saballos, Richard J</creatorcontrib><creatorcontrib>Fataftah, Majed S</creatorcontrib><creatorcontrib>Puggioni, Danilo</creatorcontrib><creatorcontrib>Rondinelli, James M</creatorcontrib><creatorcontrib>Freedman, Danna E</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Kelsey A</au><au>Saballos, Richard J</au><au>Fataftah, Majed S</au><au>Puggioni, Danilo</au><au>Rondinelli, James M</au><au>Freedman, Danna E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic investigation of competing magnetic interactions in 2D metal-chloranilate radical frameworks</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-06-21</date><risdate>2020</risdate><volume>11</volume><issue>23</issue><spage>5922</spage><epage>5928</epage><pages>5922-5928</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The discovery of emergent materials lies at the intersection of chemistry and condensed matter physics. Synthetic chemistry offers a pathway to create materials with the desired physical and electronic structures that support fundamentally new properties. Metal-organic frameworks are a promising platform for bottom-up chemical design of new materials, owing to their inherent chemical predictability and tunability relative to traditional solid-state materials. Herein, we describe the synthesis and magnetic characterization of a new 2,5-dihydroxy-1,4-benzoquinone based material, (NMe
2
H
2
)
3.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
1
), which features radical-based electronic spins on the sites of a kagomé lattice, a geometric lattice known to engender exotic electronic properties. Vibrational and electronic spectroscopies, in combination with magnetic susceptibility measurements, revealed
1
exhibits mixed valency between the radical-bearing trianionic and diamagnetic tetraanionic oxidation states of the ligand. This unpaired electron density on the ligand forms a partially occupied kagomé lattice where approximately 85% of the lattice sites are occupied with an
S
= ½ spin. We found that gallium mediates ferromagnetic coupling between ligand spins, creating a ferromagnetic kagomé lattice. By modulation of the interlayer spacing
via
post-synthetic cation metathesis of
1
to (NMe
4
)
3.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
2
) and (NEt
4
)
2
(NMe
4
)
1.5
Ga
2
(C
6
O
4
Cl
2
)
3
(
3
), we determined the nature of the magnetic coupling between neighboring planes is antiferromagnetic. Additionally, we determined the role of the metal in mediating this magnetic coupling by comparison of
2
with the In
3+
analogue, (NMe
4
)
3.5
In
2
(C
6
O
4
Cl
2
)
3
(
4
), and we found that Ga
3+
supports stronger superexchange coupling between ligand-based spins than In
3+
. The combination of intraplanar ferromagnetic coupling and interplanar antiferromagnetic coupling exchange interactions suggests these are promising materials to host topological phenomena.
2D metal-organic frameworks provide insight into kagomé spin physics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34094085</pmid><doi>10.1039/d0sc01994a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1742-2854</orcidid><orcidid>https://orcid.org/0000-0003-0508-2175</orcidid><orcidid>https://orcid.org/0000-0002-2128-4191</orcidid><orcidid>https://orcid.org/0000-0002-2579-8835</orcidid><orcidid>https://orcid.org/0000-0002-9202-8179</orcidid><orcidid>https://orcid.org/0000-0002-7386-9220</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2020-06, Vol.11 (23), p.5922-5928 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_journals_2413911517 |
source | PubMed Central (Open access) |
subjects | Antiferromagnetism Benzoquinone Chemistry Condensed matter physics Coupling Crystallography Diamagnetism Electron density Ferromagnetism Gallium Interlayers Lattice sites Ligands Magnetic permeability Magnetic properties Metal-organic frameworks Metathesis Oxidation |
title | Synthetic investigation of competing magnetic interactions in 2D metal-chloranilate radical frameworks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20investigation%20of%20competing%20magnetic%20interactions%20in%202D%20metal-chloranilate%20radical%20frameworks&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Collins,%20Kelsey%20A&rft.date=2020-06-21&rft.volume=11&rft.issue=23&rft.spage=5922&rft.epage=5928&rft.pages=5922-5928&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc01994a&rft_dat=%3Cproquest_pubme%3E2538049002%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-4275b3306236a41e1b6fa58e12b318f631e94a345fc6c14183999092b61eed6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2413911517&rft_id=info:pmid/34094085&rfr_iscdi=true |