Loading…

The impacts of data constraints on the predictive performance of a general process-based crop model (PeakN-crop v1.0)

Improving international food security under a changing climate and increasing human population will be greatly aided by improving our ability to modify, understand and predict crop growth. What we predominantly have at our disposal are either process-based models of crop physiology or statistical an...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development 2017-04, Vol.10 (4), p.1679-1701
Main Authors: Caldararu, Silvia, Purves, Drew W, Smith, Matthew J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Improving international food security under a changing climate and increasing human population will be greatly aided by improving our ability to modify, understand and predict crop growth. What we predominantly have at our disposal are either process-based models of crop physiology or statistical analyses of yield datasets, both of which suffer from various sources of error. In this paper, we present a generic process-based crop model (PeakN-crop v1.0) which we parametrise using a Bayesian model-fitting algorithm to three different sources: data–space-based vegetation indices, eddy covariance productivity measurements and regional crop yields. We show that the model parametrised without data, based on prior knowledge of the parameters, can largely capture the observed behaviour but the data-constrained model greatly improves both the model fit and reduces prediction uncertainty. We investigate the extent to which each dataset contributes to the model performance and show that while all data improve on the prior model fit, the satellite-based data and crop yield estimates are particularly important for reducing model error and uncertainty. Despite these improvements, we conclude that there are still significant knowledge gaps, in terms of available data for model parametrisation, but our study can help indicate the necessary data collection to improve our predictions of crop yields and crop responses to environmental changes.
ISSN:1991-9603
1991-962X
1991-959X
1991-9603
1991-962X
DOI:10.5194/gmd-10-1679-2017