Loading…

Relational Fusion Networks: Graph Convolutional Networks for Road Networks

The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many im...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-09
Main Authors: Jepsen, Tobias Skovgaard, Jensen, Christian S, Nielsen, Thomas Dyhre
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jepsen, Tobias Skovgaard
Jensen, Christian S
Nielsen, Thomas Dyhre
description The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many implicit assumptions of GCNs do not apply to road networks. We introduce the Relational Fusion Network (RFN), a novel type of GCN designed specifically for road networks. In particular, we propose methods that outperform state-of-the-art GCNs by 21%-40% on two machine learning tasks in road networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively leverage road network structure and may not generalize well to other road networks.
doi_str_mv 10.48550/arxiv.2006.09030
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2414138303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414138303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-8de7c841fc6e15fcb811b813e7aba0282522c432cc2856438dd3b6dc848d3c333</originalsourceid><addsrcrecordid>eNo9TsFKAzEUDIJgqf0AbwHPu768l2SjN1lsrRSF0nvJJllsXZqa7FY_3wWrh2GGmfeGYexGQCmNUnBn0_fuVCKALuEeCC7YBIlEYSTiFZvlvAcA1BUqRRP2sg6d7XfxYDs-H_Io-Gvov2L6yA98kezxndfxcIrdcD76S3kbE19H6_-da3bZ2i6H2ZmnbDN_2tTPxeptsawfV4VVSIXxoXJGitbpIFTrGiPECAqVbSygQYXoJKFzaJSWZLynRvvxxXhyRDRlt7-1xxQ_h5D77T4OaZyWtyiFFGQIiH4AGYdOfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414138303</pqid></control><display><type>article</type><title>Relational Fusion Networks: Graph Convolutional Networks for Road Networks</title><source>Publicly Available Content (ProQuest)</source><creator>Jepsen, Tobias Skovgaard ; Jensen, Christian S ; Nielsen, Thomas Dyhre</creator><creatorcontrib>Jepsen, Tobias Skovgaard ; Jensen, Christian S ; Nielsen, Thomas Dyhre</creatorcontrib><description>The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many implicit assumptions of GCNs do not apply to road networks. We introduce the Relational Fusion Network (RFN), a novel type of GCN designed specifically for road networks. In particular, we propose methods that outperform state-of-the-art GCNs by 21%-40% on two machine learning tasks in road networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively leverage road network structure and may not generalize well to other road networks.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2006.09030</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Cognitive tasks ; Foreign operations of US corporations ; Machine learning ; Roads ; Superstores ; Transportation applications ; Transportation networks</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2414138303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Jepsen, Tobias Skovgaard</creatorcontrib><creatorcontrib>Jensen, Christian S</creatorcontrib><creatorcontrib>Nielsen, Thomas Dyhre</creatorcontrib><title>Relational Fusion Networks: Graph Convolutional Networks for Road Networks</title><title>arXiv.org</title><description>The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many implicit assumptions of GCNs do not apply to road networks. We introduce the Relational Fusion Network (RFN), a novel type of GCN designed specifically for road networks. In particular, we propose methods that outperform state-of-the-art GCNs by 21%-40% on two machine learning tasks in road networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively leverage road network structure and may not generalize well to other road networks.</description><subject>Artificial neural networks</subject><subject>Cognitive tasks</subject><subject>Foreign operations of US corporations</subject><subject>Machine learning</subject><subject>Roads</subject><subject>Superstores</subject><subject>Transportation applications</subject><subject>Transportation networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9TsFKAzEUDIJgqf0AbwHPu768l2SjN1lsrRSF0nvJJllsXZqa7FY_3wWrh2GGmfeGYexGQCmNUnBn0_fuVCKALuEeCC7YBIlEYSTiFZvlvAcA1BUqRRP2sg6d7XfxYDs-H_Io-Gvov2L6yA98kezxndfxcIrdcD76S3kbE19H6_-da3bZ2i6H2ZmnbDN_2tTPxeptsawfV4VVSIXxoXJGitbpIFTrGiPECAqVbSygQYXoJKFzaJSWZLynRvvxxXhyRDRlt7-1xxQ_h5D77T4OaZyWtyiFFGQIiH4AGYdOfw</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Jepsen, Tobias Skovgaard</creator><creator>Jensen, Christian S</creator><creator>Nielsen, Thomas Dyhre</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200914</creationdate><title>Relational Fusion Networks: Graph Convolutional Networks for Road Networks</title><author>Jepsen, Tobias Skovgaard ; Jensen, Christian S ; Nielsen, Thomas Dyhre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-8de7c841fc6e15fcb811b813e7aba0282522c432cc2856438dd3b6dc848d3c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Cognitive tasks</topic><topic>Foreign operations of US corporations</topic><topic>Machine learning</topic><topic>Roads</topic><topic>Superstores</topic><topic>Transportation applications</topic><topic>Transportation networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jepsen, Tobias Skovgaard</creatorcontrib><creatorcontrib>Jensen, Christian S</creatorcontrib><creatorcontrib>Nielsen, Thomas Dyhre</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jepsen, Tobias Skovgaard</au><au>Jensen, Christian S</au><au>Nielsen, Thomas Dyhre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relational Fusion Networks: Graph Convolutional Networks for Road Networks</atitle><jtitle>arXiv.org</jtitle><date>2020-09-14</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many implicit assumptions of GCNs do not apply to road networks. We introduce the Relational Fusion Network (RFN), a novel type of GCN designed specifically for road networks. In particular, we propose methods that outperform state-of-the-art GCNs by 21%-40% on two machine learning tasks in road networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively leverage road network structure and may not generalize well to other road networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2006.09030</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2414138303
source Publicly Available Content (ProQuest)
subjects Artificial neural networks
Cognitive tasks
Foreign operations of US corporations
Machine learning
Roads
Superstores
Transportation applications
Transportation networks
title Relational Fusion Networks: Graph Convolutional Networks for Road Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relational%20Fusion%20Networks:%20Graph%20Convolutional%20Networks%20for%20Road%20Networks&rft.jtitle=arXiv.org&rft.au=Jepsen,%20Tobias%20Skovgaard&rft.date=2020-09-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2006.09030&rft_dat=%3Cproquest%3E2414138303%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-8de7c841fc6e15fcb811b813e7aba0282522c432cc2856438dd3b6dc848d3c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414138303&rft_id=info:pmid/&rfr_iscdi=true