Loading…
Relational Fusion Networks: Graph Convolutional Networks for Road Networks
The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many im...
Saved in:
Published in: | arXiv.org 2020-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jepsen, Tobias Skovgaard Jensen, Christian S Nielsen, Thomas Dyhre |
description | The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many implicit assumptions of GCNs do not apply to road networks. We introduce the Relational Fusion Network (RFN), a novel type of GCN designed specifically for road networks. In particular, we propose methods that outperform state-of-the-art GCNs by 21%-40% on two machine learning tasks in road networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively leverage road network structure and may not generalize well to other road networks. |
doi_str_mv | 10.48550/arxiv.2006.09030 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2414138303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414138303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-8de7c841fc6e15fcb811b813e7aba0282522c432cc2856438dd3b6dc848d3c333</originalsourceid><addsrcrecordid>eNo9TsFKAzEUDIJgqf0AbwHPu768l2SjN1lsrRSF0nvJJllsXZqa7FY_3wWrh2GGmfeGYexGQCmNUnBn0_fuVCKALuEeCC7YBIlEYSTiFZvlvAcA1BUqRRP2sg6d7XfxYDs-H_Io-Gvov2L6yA98kezxndfxcIrdcD76S3kbE19H6_-da3bZ2i6H2ZmnbDN_2tTPxeptsawfV4VVSIXxoXJGitbpIFTrGiPECAqVbSygQYXoJKFzaJSWZLynRvvxxXhyRDRlt7-1xxQ_h5D77T4OaZyWtyiFFGQIiH4AGYdOfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414138303</pqid></control><display><type>article</type><title>Relational Fusion Networks: Graph Convolutional Networks for Road Networks</title><source>Publicly Available Content (ProQuest)</source><creator>Jepsen, Tobias Skovgaard ; Jensen, Christian S ; Nielsen, Thomas Dyhre</creator><creatorcontrib>Jepsen, Tobias Skovgaard ; Jensen, Christian S ; Nielsen, Thomas Dyhre</creatorcontrib><description>The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many implicit assumptions of GCNs do not apply to road networks. We introduce the Relational Fusion Network (RFN), a novel type of GCN designed specifically for road networks. In particular, we propose methods that outperform state-of-the-art GCNs by 21%-40% on two machine learning tasks in road networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively leverage road network structure and may not generalize well to other road networks.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2006.09030</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Cognitive tasks ; Foreign operations of US corporations ; Machine learning ; Roads ; Superstores ; Transportation applications ; Transportation networks</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2414138303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Jepsen, Tobias Skovgaard</creatorcontrib><creatorcontrib>Jensen, Christian S</creatorcontrib><creatorcontrib>Nielsen, Thomas Dyhre</creatorcontrib><title>Relational Fusion Networks: Graph Convolutional Networks for Road Networks</title><title>arXiv.org</title><description>The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many implicit assumptions of GCNs do not apply to road networks. We introduce the Relational Fusion Network (RFN), a novel type of GCN designed specifically for road networks. In particular, we propose methods that outperform state-of-the-art GCNs by 21%-40% on two machine learning tasks in road networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively leverage road network structure and may not generalize well to other road networks.</description><subject>Artificial neural networks</subject><subject>Cognitive tasks</subject><subject>Foreign operations of US corporations</subject><subject>Machine learning</subject><subject>Roads</subject><subject>Superstores</subject><subject>Transportation applications</subject><subject>Transportation networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9TsFKAzEUDIJgqf0AbwHPu768l2SjN1lsrRSF0nvJJllsXZqa7FY_3wWrh2GGmfeGYexGQCmNUnBn0_fuVCKALuEeCC7YBIlEYSTiFZvlvAcA1BUqRRP2sg6d7XfxYDs-H_Io-Gvov2L6yA98kezxndfxcIrdcD76S3kbE19H6_-da3bZ2i6H2ZmnbDN_2tTPxeptsawfV4VVSIXxoXJGitbpIFTrGiPECAqVbSygQYXoJKFzaJSWZLynRvvxxXhyRDRlt7-1xxQ_h5D77T4OaZyWtyiFFGQIiH4AGYdOfw</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Jepsen, Tobias Skovgaard</creator><creator>Jensen, Christian S</creator><creator>Nielsen, Thomas Dyhre</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200914</creationdate><title>Relational Fusion Networks: Graph Convolutional Networks for Road Networks</title><author>Jepsen, Tobias Skovgaard ; Jensen, Christian S ; Nielsen, Thomas Dyhre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-8de7c841fc6e15fcb811b813e7aba0282522c432cc2856438dd3b6dc848d3c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Cognitive tasks</topic><topic>Foreign operations of US corporations</topic><topic>Machine learning</topic><topic>Roads</topic><topic>Superstores</topic><topic>Transportation applications</topic><topic>Transportation networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jepsen, Tobias Skovgaard</creatorcontrib><creatorcontrib>Jensen, Christian S</creatorcontrib><creatorcontrib>Nielsen, Thomas Dyhre</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jepsen, Tobias Skovgaard</au><au>Jensen, Christian S</au><au>Nielsen, Thomas Dyhre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relational Fusion Networks: Graph Convolutional Networks for Road Networks</atitle><jtitle>arXiv.org</jtitle><date>2020-09-14</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The application of machine learning techniques in the setting of road networks holds the potential to facilitate many important intelligent transportation applications. Graph Convolutional Networks (GCNs) are neural networks that are capable of leveraging the structure of a network. However, many implicit assumptions of GCNs do not apply to road networks. We introduce the Relational Fusion Network (RFN), a novel type of GCN designed specifically for road networks. In particular, we propose methods that outperform state-of-the-art GCNs by 21%-40% on two machine learning tasks in road networks. Furthermore, we show that state-of-the-art GCNs may fail to effectively leverage road network structure and may not generalize well to other road networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2006.09030</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2414138303 |
source | Publicly Available Content (ProQuest) |
subjects | Artificial neural networks Cognitive tasks Foreign operations of US corporations Machine learning Roads Superstores Transportation applications Transportation networks |
title | Relational Fusion Networks: Graph Convolutional Networks for Road Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relational%20Fusion%20Networks:%20Graph%20Convolutional%20Networks%20for%20Road%20Networks&rft.jtitle=arXiv.org&rft.au=Jepsen,%20Tobias%20Skovgaard&rft.date=2020-09-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2006.09030&rft_dat=%3Cproquest%3E2414138303%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-8de7c841fc6e15fcb811b813e7aba0282522c432cc2856438dd3b6dc848d3c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414138303&rft_id=info:pmid/&rfr_iscdi=true |