Loading…

Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1

Wakes from wind farms can extend over 50 km downwind in stably stratified conditions. These wakes can undermine power production at downwind turbines, adversely impacting revenue. As such, wind farm wake impacts must be considered in wind resource assessments, especially in regions of dense wind far...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development 2020-06, Vol.13 (6), p.2645-2662
Main Authors: Tomaszewski, Jessica M, Lundquist, Julie K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c507t-2526bfbeaba2ed2287e5ca0543fed23edfb0de7caff2808e2443fdc06a43009e3
cites cdi_FETCH-LOGICAL-c507t-2526bfbeaba2ed2287e5ca0543fed23edfb0de7caff2808e2443fdc06a43009e3
container_end_page 2662
container_issue 6
container_start_page 2645
container_title Geoscientific Model Development
container_volume 13
creator Tomaszewski, Jessica M
Lundquist, Julie K
description Wakes from wind farms can extend over 50 km downwind in stably stratified conditions. These wakes can undermine power production at downwind turbines, adversely impacting revenue. As such, wind farm wake impacts must be considered in wind resource assessments, especially in regions of dense wind farm development. The open-source Weather Research and Forecasting (WRF) numerical weather prediction model includes a wind farm parameterization to estimate wind farm wake effects, but model configuration choices can influence the resulting predictions of wind farm wakes. These choices include vertical resolution, horizontal resolution, and whether or not to include the addition of turbulent kinetic energy generated by the rotating wind turbines. Despite the sensitivity to model configuration, no clear guidance currently exists for these options. Here we compare simulated wind farm wakes produced by varying model configurations with meteorological observations near a land-based wind farm in flat terrain over several diurnal cycles. A WRF configuration comprised of horizontal resolutions of 3 km or 1 km paired with a vertical resolution of 10 m provides the most accurate representation of wind farm wake effects, such as the correct surface warming and elevated wind speed deficit. The inclusion of turbine-generated turbulence is also critical to produce accurate surface warming and should not be omitted.
doi_str_mv 10.5194/gmd-13-2645-2020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2414439728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626791542</galeid><doaj_id>oai_doaj_org_article_2f7b02d0e64f48a881dd27bbc1e06800</doaj_id><sourcerecordid>A626791542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-2526bfbeaba2ed2287e5ca0543fed23edfb0de7caff2808e2443fdc06a43009e3</originalsourceid><addsrcrecordid>eNptkkFv1DAQhSMEEqVw52jBiUOWsZM4ybGqKKxUCakFcbQm9jjrZRMX29t2_z0Oi4CVkA9jj79547FeUbzmsGp4X78fJ1PyqhSybkoBAp4UZ7zvedlLqJ7-s39evIhxCyD7VrZnxeHWTfsdJjLswc2GWQwTe8DvxCLN0SV379KBJc-0n60b9wGT8zPTG-80ReZmljbEvhHmENgNRcKgNwyz1JUPpDEmN49s8oZ27J5CXKqrVbfiL4tnFneRXv2O58XXqw9fLj-V158_ri8vrkvdQJtK0Qg52IFwQEFGiK6lRiM0dWXzsSJjBzDUarRWdNCRqPON0SCxrgB6qs6L9VHXeNyqu-AmDAfl0alfCR9GhSE5vSMlbDuAMECytnWHXceNEe0waE4gO4Cs9eao5fNYKmqXSG_yz8ykk-IShOwX6O0Rugv-x55iUlu_D3OeUYma5-f1rej-UiPmzm62PgXUk4taXUgh2543tcjU6j9UXoYmlxuTdTl_UvDupCAziR7TiPsY1fr25pSFI6uDjzGQ_fM7HNRiKpVNpXilFlOpxVTVTxOavk8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414439728</pqid></control><display><type>article</type><title>Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1</title><source>Publicly Available Content Database</source><creator>Tomaszewski, Jessica M ; Lundquist, Julie K</creator><creatorcontrib>Tomaszewski, Jessica M ; Lundquist, Julie K ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Wakes from wind farms can extend over 50 km downwind in stably stratified conditions. These wakes can undermine power production at downwind turbines, adversely impacting revenue. As such, wind farm wake impacts must be considered in wind resource assessments, especially in regions of dense wind farm development. The open-source Weather Research and Forecasting (WRF) numerical weather prediction model includes a wind farm parameterization to estimate wind farm wake effects, but model configuration choices can influence the resulting predictions of wind farm wakes. These choices include vertical resolution, horizontal resolution, and whether or not to include the addition of turbulent kinetic energy generated by the rotating wind turbines. Despite the sensitivity to model configuration, no clear guidance currently exists for these options. Here we compare simulated wind farm wakes produced by varying model configurations with meteorological observations near a land-based wind farm in flat terrain over several diurnal cycles. A WRF configuration comprised of horizontal resolutions of 3 km or 1 km paired with a vertical resolution of 10 m provides the most accurate representation of wind farm wake effects, such as the correct surface warming and elevated wind speed deficit. The inclusion of turbine-generated turbulence is also critical to produce accurate surface warming and should not be omitted.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-13-2645-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Analysis ; Atmospheric boundary layer ; Computer simulation ; configuration choices ; Configurations ; Diurnal ; Electricity ; Energy ; Kinetic energy ; Mathematical models ; Meteorological observations ; Meteorological research ; Numerical weather forecasting ; Numerical weather prediction ; Parameterization ; Prediction models ; Resolution ; Sensitivity ; simulated wind farm wake sensitivity ; Simulation ; Surface temperature ; Temperature ; Turbine engines ; Turbines ; Turbulence ; Turbulent kinetic energy ; Wakes ; Weather ; Weather forecasting ; weather research and forecasting ; Wind effects ; WIND ENERGY ; Wind farms ; Wind power ; Wind power generation ; Wind power plants ; Wind speed ; Wind turbines</subject><ispartof>Geoscientific Model Development, 2020-06, Vol.13 (6), p.2645-2662</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-2526bfbeaba2ed2287e5ca0543fed23edfb0de7caff2808e2443fdc06a43009e3</citedby><cites>FETCH-LOGICAL-c507t-2526bfbeaba2ed2287e5ca0543fed23edfb0de7caff2808e2443fdc06a43009e3</cites><orcidid>0000-0001-5490-2702 ; 0000-0002-1043-9901 ; 0000000210439901 ; 0000000154902702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414439728/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414439728?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1602690$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomaszewski, Jessica M</creatorcontrib><creatorcontrib>Lundquist, Julie K</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1</title><title>Geoscientific Model Development</title><description>Wakes from wind farms can extend over 50 km downwind in stably stratified conditions. These wakes can undermine power production at downwind turbines, adversely impacting revenue. As such, wind farm wake impacts must be considered in wind resource assessments, especially in regions of dense wind farm development. The open-source Weather Research and Forecasting (WRF) numerical weather prediction model includes a wind farm parameterization to estimate wind farm wake effects, but model configuration choices can influence the resulting predictions of wind farm wakes. These choices include vertical resolution, horizontal resolution, and whether or not to include the addition of turbulent kinetic energy generated by the rotating wind turbines. Despite the sensitivity to model configuration, no clear guidance currently exists for these options. Here we compare simulated wind farm wakes produced by varying model configurations with meteorological observations near a land-based wind farm in flat terrain over several diurnal cycles. A WRF configuration comprised of horizontal resolutions of 3 km or 1 km paired with a vertical resolution of 10 m provides the most accurate representation of wind farm wake effects, such as the correct surface warming and elevated wind speed deficit. The inclusion of turbine-generated turbulence is also critical to produce accurate surface warming and should not be omitted.</description><subject>Analysis</subject><subject>Atmospheric boundary layer</subject><subject>Computer simulation</subject><subject>configuration choices</subject><subject>Configurations</subject><subject>Diurnal</subject><subject>Electricity</subject><subject>Energy</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Meteorological observations</subject><subject>Meteorological research</subject><subject>Numerical weather forecasting</subject><subject>Numerical weather prediction</subject><subject>Parameterization</subject><subject>Prediction models</subject><subject>Resolution</subject><subject>Sensitivity</subject><subject>simulated wind farm wake sensitivity</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Turbine engines</subject><subject>Turbines</subject><subject>Turbulence</subject><subject>Turbulent kinetic energy</subject><subject>Wakes</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>weather research and forecasting</subject><subject>Wind effects</subject><subject>WIND ENERGY</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>Wind power plants</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkFv1DAQhSMEEqVw52jBiUOWsZM4ybGqKKxUCakFcbQm9jjrZRMX29t2_z0Oi4CVkA9jj79547FeUbzmsGp4X78fJ1PyqhSybkoBAp4UZ7zvedlLqJ7-s39evIhxCyD7VrZnxeHWTfsdJjLswc2GWQwTe8DvxCLN0SV379KBJc-0n60b9wGT8zPTG-80ReZmljbEvhHmENgNRcKgNwyz1JUPpDEmN49s8oZ27J5CXKqrVbfiL4tnFneRXv2O58XXqw9fLj-V158_ri8vrkvdQJtK0Qg52IFwQEFGiK6lRiM0dWXzsSJjBzDUarRWdNCRqPON0SCxrgB6qs6L9VHXeNyqu-AmDAfl0alfCR9GhSE5vSMlbDuAMECytnWHXceNEe0waE4gO4Cs9eao5fNYKmqXSG_yz8ykk-IShOwX6O0Rugv-x55iUlu_D3OeUYma5-f1rej-UiPmzm62PgXUk4taXUgh2543tcjU6j9UXoYmlxuTdTl_UvDupCAziR7TiPsY1fr25pSFI6uDjzGQ_fM7HNRiKpVNpXilFlOpxVTVTxOavk8</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Tomaszewski, Jessica M</creator><creator>Lundquist, Julie K</creator><general>Copernicus GmbH</general><general>European Geosciences Union</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5490-2702</orcidid><orcidid>https://orcid.org/0000-0002-1043-9901</orcidid><orcidid>https://orcid.org/0000000210439901</orcidid><orcidid>https://orcid.org/0000000154902702</orcidid></search><sort><creationdate>20200616</creationdate><title>Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1</title><author>Tomaszewski, Jessica M ; Lundquist, Julie K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-2526bfbeaba2ed2287e5ca0543fed23edfb0de7caff2808e2443fdc06a43009e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Atmospheric boundary layer</topic><topic>Computer simulation</topic><topic>configuration choices</topic><topic>Configurations</topic><topic>Diurnal</topic><topic>Electricity</topic><topic>Energy</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Meteorological observations</topic><topic>Meteorological research</topic><topic>Numerical weather forecasting</topic><topic>Numerical weather prediction</topic><topic>Parameterization</topic><topic>Prediction models</topic><topic>Resolution</topic><topic>Sensitivity</topic><topic>simulated wind farm wake sensitivity</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Turbine engines</topic><topic>Turbines</topic><topic>Turbulence</topic><topic>Turbulent kinetic energy</topic><topic>Wakes</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>weather research and forecasting</topic><topic>Wind effects</topic><topic>WIND ENERGY</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>Wind power plants</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomaszewski, Jessica M</creatorcontrib><creatorcontrib>Lundquist, Julie K</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomaszewski, Jessica M</au><au>Lundquist, Julie K</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1</atitle><jtitle>Geoscientific Model Development</jtitle><date>2020-06-16</date><risdate>2020</risdate><volume>13</volume><issue>6</issue><spage>2645</spage><epage>2662</epage><pages>2645-2662</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>Wakes from wind farms can extend over 50 km downwind in stably stratified conditions. These wakes can undermine power production at downwind turbines, adversely impacting revenue. As such, wind farm wake impacts must be considered in wind resource assessments, especially in regions of dense wind farm development. The open-source Weather Research and Forecasting (WRF) numerical weather prediction model includes a wind farm parameterization to estimate wind farm wake effects, but model configuration choices can influence the resulting predictions of wind farm wakes. These choices include vertical resolution, horizontal resolution, and whether or not to include the addition of turbulent kinetic energy generated by the rotating wind turbines. Despite the sensitivity to model configuration, no clear guidance currently exists for these options. Here we compare simulated wind farm wakes produced by varying model configurations with meteorological observations near a land-based wind farm in flat terrain over several diurnal cycles. A WRF configuration comprised of horizontal resolutions of 3 km or 1 km paired with a vertical resolution of 10 m provides the most accurate representation of wind farm wake effects, such as the correct surface warming and elevated wind speed deficit. The inclusion of turbine-generated turbulence is also critical to produce accurate surface warming and should not be omitted.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-13-2645-2020</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5490-2702</orcidid><orcidid>https://orcid.org/0000-0002-1043-9901</orcidid><orcidid>https://orcid.org/0000000210439901</orcidid><orcidid>https://orcid.org/0000000154902702</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1991-9603
ispartof Geoscientific Model Development, 2020-06, Vol.13 (6), p.2645-2662
issn 1991-9603
1991-959X
1991-962X
1991-9603
1991-962X
language eng
recordid cdi_proquest_journals_2414439728
source Publicly Available Content Database
subjects Analysis
Atmospheric boundary layer
Computer simulation
configuration choices
Configurations
Diurnal
Electricity
Energy
Kinetic energy
Mathematical models
Meteorological observations
Meteorological research
Numerical weather forecasting
Numerical weather prediction
Parameterization
Prediction models
Resolution
Sensitivity
simulated wind farm wake sensitivity
Simulation
Surface temperature
Temperature
Turbine engines
Turbines
Turbulence
Turbulent kinetic energy
Wakes
Weather
Weather forecasting
weather research and forecasting
Wind effects
WIND ENERGY
Wind farms
Wind power
Wind power generation
Wind power plants
Wind speed
Wind turbines
title Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20wind%20farm%20wake%20sensitivity%20to%20configuration%20choices%20in%20the%20Weather%20Research%20and%20Forecasting%20model%20version%203.8.1&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Tomaszewski,%20Jessica%20M&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-06-16&rft.volume=13&rft.issue=6&rft.spage=2645&rft.epage=2662&rft.pages=2645-2662&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-13-2645-2020&rft_dat=%3Cgale_doaj_%3EA626791542%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-2526bfbeaba2ed2287e5ca0543fed23edfb0de7caff2808e2443fdc06a43009e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414439728&rft_id=info:pmid/&rft_galeid=A626791542&rfr_iscdi=true