Loading…

On a family of singular continuous measures related to the doubling map

Here, we study some measures that can be represented by infinite Riesz products of 1-periodic functions and are related to the doubling map. We show that these measures are purely singular continuous with respect to Lebesgue measure and that their distribution functions satisfy super-polynomial asym...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-06
Main Authors: Baake, Michael, Coons, Michael, Evans, James, Gohlke, Philipp
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Baake, Michael
Coons, Michael
Evans, James
Gohlke, Philipp
description Here, we study some measures that can be represented by infinite Riesz products of 1-periodic functions and are related to the doubling map. We show that these measures are purely singular continuous with respect to Lebesgue measure and that their distribution functions satisfy super-polynomial asymptotics near the origin, thus providing a family of extremal examples of singular measures, including the Thue--Morse measure.
doi_str_mv 10.48550/arxiv.2006.09755
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2414583548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414583548</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-53a460f5ccf06f43465a7fa4901460eb8f2647b9ce51b921544216cb30cd8c413</originalsourceid><addsrcrecordid>eNotjVFLwzAURoMgOOZ-wN4CPrfeJPem6aMMncJgL3sfaZpoR9vMphH99xb06YPD4XyMbQWUaIjg0U7f3VcpAXQJdUV0w1ZSKVEYlPKObVK6AIDUlSRSK7Y_jtzyYIeu_-Ex8NSN77m3E3dxnLsxx5z44G3Kk0988r2dfcvnyOcPz9uYm37x-WCv9-w22D75zf-u2enl-bR7LQ7H_dvu6VDYmqggZVFDIOcC6IAKNdkqWKxBLNw3JkiNVVM7T6KppSBEKbRrFLjWOBRqzR7-stcpfmaf5vMl5mlcHs8SBZJRhEb9AqNnTJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414583548</pqid></control><display><type>article</type><title>On a family of singular continuous measures related to the doubling map</title><source>Publicly Available Content Database</source><creator>Baake, Michael ; Coons, Michael ; Evans, James ; Gohlke, Philipp</creator><creatorcontrib>Baake, Michael ; Coons, Michael ; Evans, James ; Gohlke, Philipp</creatorcontrib><description>Here, we study some measures that can be represented by infinite Riesz products of 1-periodic functions and are related to the doubling map. We show that these measures are purely singular continuous with respect to Lebesgue measure and that their distribution functions satisfy super-polynomial asymptotics near the origin, thus providing a family of extremal examples of singular measures, including the Thue--Morse measure.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2006.09755</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Distribution functions ; Mathematical analysis ; Periodic functions ; Polynomials</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2414583548?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Baake, Michael</creatorcontrib><creatorcontrib>Coons, Michael</creatorcontrib><creatorcontrib>Evans, James</creatorcontrib><creatorcontrib>Gohlke, Philipp</creatorcontrib><title>On a family of singular continuous measures related to the doubling map</title><title>arXiv.org</title><description>Here, we study some measures that can be represented by infinite Riesz products of 1-periodic functions and are related to the doubling map. We show that these measures are purely singular continuous with respect to Lebesgue measure and that their distribution functions satisfy super-polynomial asymptotics near the origin, thus providing a family of extremal examples of singular measures, including the Thue--Morse measure.</description><subject>Distribution functions</subject><subject>Mathematical analysis</subject><subject>Periodic functions</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAURoMgOOZ-wN4CPrfeJPem6aMMncJgL3sfaZpoR9vMphH99xb06YPD4XyMbQWUaIjg0U7f3VcpAXQJdUV0w1ZSKVEYlPKObVK6AIDUlSRSK7Y_jtzyYIeu_-Ex8NSN77m3E3dxnLsxx5z44G3Kk0988r2dfcvnyOcPz9uYm37x-WCv9-w22D75zf-u2enl-bR7LQ7H_dvu6VDYmqggZVFDIOcC6IAKNdkqWKxBLNw3JkiNVVM7T6KppSBEKbRrFLjWOBRqzR7-stcpfmaf5vMl5mlcHs8SBZJRhEb9AqNnTJw</recordid><startdate>20210614</startdate><enddate>20210614</enddate><creator>Baake, Michael</creator><creator>Coons, Michael</creator><creator>Evans, James</creator><creator>Gohlke, Philipp</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210614</creationdate><title>On a family of singular continuous measures related to the doubling map</title><author>Baake, Michael ; Coons, Michael ; Evans, James ; Gohlke, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-53a460f5ccf06f43465a7fa4901460eb8f2647b9ce51b921544216cb30cd8c413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Distribution functions</topic><topic>Mathematical analysis</topic><topic>Periodic functions</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Baake, Michael</creatorcontrib><creatorcontrib>Coons, Michael</creatorcontrib><creatorcontrib>Evans, James</creatorcontrib><creatorcontrib>Gohlke, Philipp</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baake, Michael</au><au>Coons, Michael</au><au>Evans, James</au><au>Gohlke, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a family of singular continuous measures related to the doubling map</atitle><jtitle>arXiv.org</jtitle><date>2021-06-14</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Here, we study some measures that can be represented by infinite Riesz products of 1-periodic functions and are related to the doubling map. We show that these measures are purely singular continuous with respect to Lebesgue measure and that their distribution functions satisfy super-polynomial asymptotics near the origin, thus providing a family of extremal examples of singular measures, including the Thue--Morse measure.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2006.09755</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2414583548
source Publicly Available Content Database
subjects Distribution functions
Mathematical analysis
Periodic functions
Polynomials
title On a family of singular continuous measures related to the doubling map
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20family%20of%20singular%20continuous%20measures%20related%20to%20the%20doubling%20map&rft.jtitle=arXiv.org&rft.au=Baake,%20Michael&rft.date=2021-06-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2006.09755&rft_dat=%3Cproquest%3E2414583548%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-53a460f5ccf06f43465a7fa4901460eb8f2647b9ce51b921544216cb30cd8c413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414583548&rft_id=info:pmid/&rfr_iscdi=true