Loading…
Subvarieties of Pseudocomplemented Kleene Algebras
In this paper we study the subdirectly irreducible algebras in the variety \({\cal PCDM}\) of pseudocomplemented De Morgan algebras by means of their De Morgan \(p\)-spaces. We introduce the notion of \(body\) of an algebra \({\bf L} \in {\cal PCDM}\) and determine \(Body({\bf L})\) when \({\bf L}\)...
Saved in:
Published in: | arXiv.org 2020-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Castaño, Diego Castaño, Valeria José Patricio Díaz Varela Marcela Muñoz Santis |
description | In this paper we study the subdirectly irreducible algebras in the variety \({\cal PCDM}\) of pseudocomplemented De Morgan algebras by means of their De Morgan \(p\)-spaces. We introduce the notion of \(body\) of an algebra \({\bf L} \in {\cal PCDM}\) and determine \(Body({\bf L})\) when \({\bf L}\) is subdirectly irreducible. As a consequence of this, in the case of pseudocomplemented Kleene algebras, three special subvarieties arise naturally, for which we give explicit identities that characterize them. We also introduce a subvariety \({\cal BPK}\) of \({\cal PCDM}\), namely the variety of \(bundle\) \(pseudocomplemented\) \(Kleene\) \(algebras\), determine the whole subvariety lattice and find explicit equational bases for each of the subvarieties. In addition, we study the subvariety \({\cal BPK}_0\) of \({\cal BPK}\) generated by the simple members of \({\cal BPK}\), determine the structure of the free algebra over a finite set and their finite weakly projective algebras. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2414586045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414586045</sourcerecordid><originalsourceid>FETCH-proquest_journals_24145860453</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCi5NKkssykwtyUwtVshPUwgoTi1NyU_Ozy3ISc1NzStJTVHwzklNzUtVcMxJT00qSizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IxNDE1MLMwMTU2PiVAEAELQ0Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414586045</pqid></control><display><type>article</type><title>Subvarieties of Pseudocomplemented Kleene Algebras</title><source>Publicly Available Content Database</source><creator>Castaño, Diego ; Castaño, Valeria ; José Patricio Díaz Varela ; Marcela Muñoz Santis</creator><creatorcontrib>Castaño, Diego ; Castaño, Valeria ; José Patricio Díaz Varela ; Marcela Muñoz Santis</creatorcontrib><description>In this paper we study the subdirectly irreducible algebras in the variety \({\cal PCDM}\) of pseudocomplemented De Morgan algebras by means of their De Morgan \(p\)-spaces. We introduce the notion of \(body\) of an algebra \({\bf L} \in {\cal PCDM}\) and determine \(Body({\bf L})\) when \({\bf L}\) is subdirectly irreducible. As a consequence of this, in the case of pseudocomplemented Kleene algebras, three special subvarieties arise naturally, for which we give explicit identities that characterize them. We also introduce a subvariety \({\cal BPK}\) of \({\cal PCDM}\), namely the variety of \(bundle\) \(pseudocomplemented\) \(Kleene\) \(algebras\), determine the whole subvariety lattice and find explicit equational bases for each of the subvarieties. In addition, we study the subvariety \({\cal BPK}_0\) of \({\cal BPK}\) generated by the simple members of \({\cal BPK}\), determine the structure of the free algebra over a finite set and their finite weakly projective algebras.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2414586045?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Castaño, Diego</creatorcontrib><creatorcontrib>Castaño, Valeria</creatorcontrib><creatorcontrib>José Patricio Díaz Varela</creatorcontrib><creatorcontrib>Marcela Muñoz Santis</creatorcontrib><title>Subvarieties of Pseudocomplemented Kleene Algebras</title><title>arXiv.org</title><description>In this paper we study the subdirectly irreducible algebras in the variety \({\cal PCDM}\) of pseudocomplemented De Morgan algebras by means of their De Morgan \(p\)-spaces. We introduce the notion of \(body\) of an algebra \({\bf L} \in {\cal PCDM}\) and determine \(Body({\bf L})\) when \({\bf L}\) is subdirectly irreducible. As a consequence of this, in the case of pseudocomplemented Kleene algebras, three special subvarieties arise naturally, for which we give explicit identities that characterize them. We also introduce a subvariety \({\cal BPK}\) of \({\cal PCDM}\), namely the variety of \(bundle\) \(pseudocomplemented\) \(Kleene\) \(algebras\), determine the whole subvariety lattice and find explicit equational bases for each of the subvarieties. In addition, we study the subvariety \({\cal BPK}_0\) of \({\cal BPK}\) generated by the simple members of \({\cal BPK}\), determine the structure of the free algebra over a finite set and their finite weakly projective algebras.</description><subject>Algebra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCi5NKkssykwtyUwtVshPUwgoTi1NyU_Ozy3ISc1NzStJTVHwzklNzUtVcMxJT00qSizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IxNDE1MLMwMTU2PiVAEAELQ0Mg</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Castaño, Diego</creator><creator>Castaño, Valeria</creator><creator>José Patricio Díaz Varela</creator><creator>Marcela Muñoz Santis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200617</creationdate><title>Subvarieties of Pseudocomplemented Kleene Algebras</title><author>Castaño, Diego ; Castaño, Valeria ; José Patricio Díaz Varela ; Marcela Muñoz Santis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24145860453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><toplevel>online_resources</toplevel><creatorcontrib>Castaño, Diego</creatorcontrib><creatorcontrib>Castaño, Valeria</creatorcontrib><creatorcontrib>José Patricio Díaz Varela</creatorcontrib><creatorcontrib>Marcela Muñoz Santis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castaño, Diego</au><au>Castaño, Valeria</au><au>José Patricio Díaz Varela</au><au>Marcela Muñoz Santis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Subvarieties of Pseudocomplemented Kleene Algebras</atitle><jtitle>arXiv.org</jtitle><date>2020-06-17</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper we study the subdirectly irreducible algebras in the variety \({\cal PCDM}\) of pseudocomplemented De Morgan algebras by means of their De Morgan \(p\)-spaces. We introduce the notion of \(body\) of an algebra \({\bf L} \in {\cal PCDM}\) and determine \(Body({\bf L})\) when \({\bf L}\) is subdirectly irreducible. As a consequence of this, in the case of pseudocomplemented Kleene algebras, three special subvarieties arise naturally, for which we give explicit identities that characterize them. We also introduce a subvariety \({\cal BPK}\) of \({\cal PCDM}\), namely the variety of \(bundle\) \(pseudocomplemented\) \(Kleene\) \(algebras\), determine the whole subvariety lattice and find explicit equational bases for each of the subvarieties. In addition, we study the subvariety \({\cal BPK}_0\) of \({\cal BPK}\) generated by the simple members of \({\cal BPK}\), determine the structure of the free algebra over a finite set and their finite weakly projective algebras.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2414586045 |
source | Publicly Available Content Database |
subjects | Algebra |
title | Subvarieties of Pseudocomplemented Kleene Algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Subvarieties%20of%20Pseudocomplemented%20Kleene%20Algebras&rft.jtitle=arXiv.org&rft.au=Casta%C3%B1o,%20Diego&rft.date=2020-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2414586045%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24145860453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414586045&rft_id=info:pmid/&rfr_iscdi=true |