Loading…

Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers

This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with...

Full description

Saved in:
Bibliographic Details
Published in:MRS communications 2020-06, Vol.10 (2), p.230-241
Main Authors: Liu, Y., Zhou, P., Fu, J., Iyengar, M., Liu, N., Du, P., Xiong, Y., Moiseienko, V., Zhang, W., Zhang, J., Ma, Z., Qi, Y., Novosad, V., Zhou, T., Filippov, D., Zhang, T., Page, M. E., Srinivasan, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-766f2161f286eb91af5f03da1b7f2a8b318d1144d95ba64bb8843ef9c57ca0ca3
cites cdi_FETCH-LOGICAL-c373t-766f2161f286eb91af5f03da1b7f2a8b318d1144d95ba64bb8843ef9c57ca0ca3
container_end_page 241
container_issue 2
container_start_page 230
container_title MRS communications
container_volume 10
creator Liu, Y.
Zhou, P.
Fu, J.
Iyengar, M.
Liu, N.
Du, P.
Xiong, Y.
Moiseienko, V.
Zhang, W.
Zhang, J.
Ma, Z.
Qi, Y.
Novosad, V.
Zhou, T.
Filippov, D.
Zhang, T.
Page, M. E.
Srinivasan, G.
description This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.
doi_str_mv 10.1557/mrc.2020.30
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414721998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrc_2020_30</cupid><sourcerecordid>2414721998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-766f2161f286eb91af5f03da1b7f2a8b318d1144d95ba64bb8843ef9c57ca0ca3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAiCo65K_9AwUvtzEfTtJcy_IKBF-p1OUlPasaazCSC_ns7N-aNmJucwJOXw5tl55TMqRDyegh6zggjc06OsgmjoimqupLHh1k0p9ksxhUZj6iYlGKS9c8pgHXFgJ2FhF0-QO8w-QLXqFOwOrcuYQCdrHdxfORv-Am9d7DODYZgE-bgup_ZH_5oD592FA6cN1ZhiGfZiYF1xNn-nmavd7cvi4di-XT_uLhZFppLngpZVYbRihpWV6gaCkYYwjugShoGteK07igty64RCqpSqbouOZpGC6mBaODT7GKXuwn-_QNjalf-I4zbxpaVtJSMNk09qsud0sHHGNC0m2AHCF8tJe22zHYss92W2XIy6qudjqNyPYbfzL95sQ-HQQXb9fi__wYpoIcz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414721998</pqid></control><display><type>article</type><title>Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers</title><source>Springer Nature</source><creator>Liu, Y. ; Zhou, P. ; Fu, J. ; Iyengar, M. ; Liu, N. ; Du, P. ; Xiong, Y. ; Moiseienko, V. ; Zhang, W. ; Zhang, J. ; Ma, Z. ; Qi, Y. ; Novosad, V. ; Zhou, T. ; Filippov, D. ; Zhang, T. ; Page, M. E. ; Srinivasan, G.</creator><creatorcontrib>Liu, Y. ; Zhou, P. ; Fu, J. ; Iyengar, M. ; Liu, N. ; Du, P. ; Xiong, Y. ; Moiseienko, V. ; Zhang, W. ; Zhang, J. ; Ma, Z. ; Qi, Y. ; Novosad, V. ; Zhou, T. ; Filippov, D. ; Zhang, T. ; Page, M. E. ; Srinivasan, G.</creatorcontrib><description>This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.</description><identifier>ISSN: 2159-6859</identifier><identifier>EISSN: 2159-6867</identifier><identifier>DOI: 10.1557/mrc.2020.30</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aluminum ; Anisotropy ; Barium ; Barium titanates ; Biomaterials ; Characterization and Evaluation of Materials ; Core-shell structure ; Coupling ; Electric fields ; Expected values ; Ferroelectricity ; Ferroelectrics ; Induced polarization ; Lead zirconate titanates ; Magnetic fields ; Materials Engineering ; Materials Science ; Microscopy ; Nanofibers ; Nanotechnology ; Nanowires ; Nitrates ; Order parameters ; Polymer Sciences ; Prospective Article ; Prospective Articles ; Stainless steel ; Temperature ; Titanium</subject><ispartof>MRS communications, 2020-06, Vol.10 (2), p.230-241</ispartof><rights>Copyright © Materials Research Society, 2020</rights><rights>The Materials Research Society 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-766f2161f286eb91af5f03da1b7f2a8b318d1144d95ba64bb8843ef9c57ca0ca3</citedby><cites>FETCH-LOGICAL-c373t-766f2161f286eb91af5f03da1b7f2a8b318d1144d95ba64bb8843ef9c57ca0ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Zhou, P.</creatorcontrib><creatorcontrib>Fu, J.</creatorcontrib><creatorcontrib>Iyengar, M.</creatorcontrib><creatorcontrib>Liu, N.</creatorcontrib><creatorcontrib>Du, P.</creatorcontrib><creatorcontrib>Xiong, Y.</creatorcontrib><creatorcontrib>Moiseienko, V.</creatorcontrib><creatorcontrib>Zhang, W.</creatorcontrib><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Ma, Z.</creatorcontrib><creatorcontrib>Qi, Y.</creatorcontrib><creatorcontrib>Novosad, V.</creatorcontrib><creatorcontrib>Zhou, T.</creatorcontrib><creatorcontrib>Filippov, D.</creatorcontrib><creatorcontrib>Zhang, T.</creatorcontrib><creatorcontrib>Page, M. E.</creatorcontrib><creatorcontrib>Srinivasan, G.</creatorcontrib><title>Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers</title><title>MRS communications</title><addtitle>MRS Communications</addtitle><addtitle>MRC</addtitle><description>This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.</description><subject>Aluminum</subject><subject>Anisotropy</subject><subject>Barium</subject><subject>Barium titanates</subject><subject>Biomaterials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Core-shell structure</subject><subject>Coupling</subject><subject>Electric fields</subject><subject>Expected values</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Induced polarization</subject><subject>Lead zirconate titanates</subject><subject>Magnetic fields</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanofibers</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nitrates</subject><subject>Order parameters</subject><subject>Polymer Sciences</subject><subject>Prospective Article</subject><subject>Prospective Articles</subject><subject>Stainless steel</subject><subject>Temperature</subject><subject>Titanium</subject><issn>2159-6859</issn><issn>2159-6867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAiCo65K_9AwUvtzEfTtJcy_IKBF-p1OUlPasaazCSC_ns7N-aNmJucwJOXw5tl55TMqRDyegh6zggjc06OsgmjoimqupLHh1k0p9ksxhUZj6iYlGKS9c8pgHXFgJ2FhF0-QO8w-QLXqFOwOrcuYQCdrHdxfORv-Am9d7DODYZgE-bgup_ZH_5oD592FA6cN1ZhiGfZiYF1xNn-nmavd7cvi4di-XT_uLhZFppLngpZVYbRihpWV6gaCkYYwjugShoGteK07igty64RCqpSqbouOZpGC6mBaODT7GKXuwn-_QNjalf-I4zbxpaVtJSMNk09qsud0sHHGNC0m2AHCF8tJe22zHYss92W2XIy6qudjqNyPYbfzL95sQ-HQQXb9fi__wYpoIcz</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Liu, Y.</creator><creator>Zhou, P.</creator><creator>Fu, J.</creator><creator>Iyengar, M.</creator><creator>Liu, N.</creator><creator>Du, P.</creator><creator>Xiong, Y.</creator><creator>Moiseienko, V.</creator><creator>Zhang, W.</creator><creator>Zhang, J.</creator><creator>Ma, Z.</creator><creator>Qi, Y.</creator><creator>Novosad, V.</creator><creator>Zhou, T.</creator><creator>Filippov, D.</creator><creator>Zhang, T.</creator><creator>Page, M. E.</creator><creator>Srinivasan, G.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20200601</creationdate><title>Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers</title><author>Liu, Y. ; Zhou, P. ; Fu, J. ; Iyengar, M. ; Liu, N. ; Du, P. ; Xiong, Y. ; Moiseienko, V. ; Zhang, W. ; Zhang, J. ; Ma, Z. ; Qi, Y. ; Novosad, V. ; Zhou, T. ; Filippov, D. ; Zhang, T. ; Page, M. E. ; Srinivasan, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-766f2161f286eb91af5f03da1b7f2a8b318d1144d95ba64bb8843ef9c57ca0ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Anisotropy</topic><topic>Barium</topic><topic>Barium titanates</topic><topic>Biomaterials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Core-shell structure</topic><topic>Coupling</topic><topic>Electric fields</topic><topic>Expected values</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Induced polarization</topic><topic>Lead zirconate titanates</topic><topic>Magnetic fields</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanofibers</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nitrates</topic><topic>Order parameters</topic><topic>Polymer Sciences</topic><topic>Prospective Article</topic><topic>Prospective Articles</topic><topic>Stainless steel</topic><topic>Temperature</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Zhou, P.</creatorcontrib><creatorcontrib>Fu, J.</creatorcontrib><creatorcontrib>Iyengar, M.</creatorcontrib><creatorcontrib>Liu, N.</creatorcontrib><creatorcontrib>Du, P.</creatorcontrib><creatorcontrib>Xiong, Y.</creatorcontrib><creatorcontrib>Moiseienko, V.</creatorcontrib><creatorcontrib>Zhang, W.</creatorcontrib><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Ma, Z.</creatorcontrib><creatorcontrib>Qi, Y.</creatorcontrib><creatorcontrib>Novosad, V.</creatorcontrib><creatorcontrib>Zhou, T.</creatorcontrib><creatorcontrib>Filippov, D.</creatorcontrib><creatorcontrib>Zhang, T.</creatorcontrib><creatorcontrib>Page, M. E.</creatorcontrib><creatorcontrib>Srinivasan, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y.</au><au>Zhou, P.</au><au>Fu, J.</au><au>Iyengar, M.</au><au>Liu, N.</au><au>Du, P.</au><au>Xiong, Y.</au><au>Moiseienko, V.</au><au>Zhang, W.</au><au>Zhang, J.</au><au>Ma, Z.</au><au>Qi, Y.</au><au>Novosad, V.</au><au>Zhou, T.</au><au>Filippov, D.</au><au>Zhang, T.</au><au>Page, M. E.</au><au>Srinivasan, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers</atitle><jtitle>MRS communications</jtitle><stitle>MRS Communications</stitle><addtitle>MRC</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>230</spage><epage>241</epage><pages>230-241</pages><issn>2159-6859</issn><eissn>2159-6867</eissn><abstract>This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrc.2020.30</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2159-6859
ispartof MRS communications, 2020-06, Vol.10 (2), p.230-241
issn 2159-6859
2159-6867
language eng
recordid cdi_proquest_journals_2414721998
source Springer Nature
subjects Aluminum
Anisotropy
Barium
Barium titanates
Biomaterials
Characterization and Evaluation of Materials
Core-shell structure
Coupling
Electric fields
Expected values
Ferroelectricity
Ferroelectrics
Induced polarization
Lead zirconate titanates
Magnetic fields
Materials Engineering
Materials Science
Microscopy
Nanofibers
Nanotechnology
Nanowires
Nitrates
Order parameters
Polymer Sciences
Prospective Article
Prospective Articles
Stainless steel
Temperature
Titanium
title Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-mediated%20magneto-electric%20interactions%20in%20hexagonal%20ferrite%20and%20ferroelectric%20coaxial%20nanofibers&rft.jtitle=MRS%20communications&rft.au=Liu,%20Y.&rft.date=2020-06-01&rft.volume=10&rft.issue=2&rft.spage=230&rft.epage=241&rft.pages=230-241&rft.issn=2159-6859&rft.eissn=2159-6867&rft_id=info:doi/10.1557/mrc.2020.30&rft_dat=%3Cproquest_cross%3E2414721998%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-766f2161f286eb91af5f03da1b7f2a8b318d1144d95ba64bb8843ef9c57ca0ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414721998&rft_id=info:pmid/&rft_cupid=10_1557_mrc_2020_30&rfr_iscdi=true