Loading…

Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review

Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review o...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2020-06, Vol.12 (12), p.4945
Main Authors: Sureda Riera, Tomás, Bermejo Higuera, Juan-Ramón, Bermejo Higuera, Javier, Martínez Herraiz, José-Javier, Sicilia Montalvo, Juan-Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93
cites cdi_FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93
container_end_page
container_issue 12
container_start_page 4945
container_title Sustainability
container_volume 12
creator Sureda Riera, Tomás
Bermejo Higuera, Juan-Ramón
Bermejo Higuera, Javier
Martínez Herraiz, José-Javier
Sicilia Montalvo, Juan-Antonio
description Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review of the use of anomaly detection techniques in the prevention and detection of web attacks is undertaken; in particular, we used the standardized method of a systematic review of literature in the field of computer science, proposed by Kitchenham. This method is applied to a set of 88 papers extracted from a total of 8041 reviewed papers, which have been published in notable journals. This paper discusses the process carried out in this systematic review, as well as the results and findings obtained to identify the current state of the art of web anomaly detection.
doi_str_mv 10.3390/su12124945
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415197181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415197181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93</originalsourceid><addsrcrecordid>eNpNUEtLAzEYDKJgqb34CwLehNZ8SfaR41KfUFC04nHJJtlHbZOaZCv7761W0LnMHOYBg9A5kBljglyFHihQLnhyhEaUZDAFkpDjf_oUTUJYkT0YAwHpCJknb3bGxs5ZLK3Gt13Txs42WDaysyHiN1PhIkap3gOOrXd90-LCuo1cD_jaRKN-okujWuvWrhlmuMAvQ4hmI2On8LPZdebzDJ3Uch3M5JfH6PX2Zjm_ny4e7x7mxWKqqEjiFDhNtDYCoEq1TqUgIstUKqhKZUo1ZblUItWmrvMsZ1xzyXOdVzWDKuOqEmyMLg69W-8-ehNiuXK9t_vJknJIQGSQw951eXAp70Lwpi63vttIP5RAyu8ny78n2RcOCWY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415197181</pqid></control><display><type>article</type><title>Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review</title><source>ProQuest Publicly Available Content database</source><creator>Sureda Riera, Tomás ; Bermejo Higuera, Juan-Ramón ; Bermejo Higuera, Javier ; Martínez Herraiz, José-Javier ; Sicilia Montalvo, Juan-Antonio</creator><creatorcontrib>Sureda Riera, Tomás ; Bermejo Higuera, Juan-Ramón ; Bermejo Higuera, Javier ; Martínez Herraiz, José-Javier ; Sicilia Montalvo, Juan-Antonio</creatorcontrib><description>Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review of the use of anomaly detection techniques in the prevention and detection of web attacks is undertaken; in particular, we used the standardized method of a systematic review of literature in the field of computer science, proposed by Kitchenham. This method is applied to a set of 88 papers extracted from a total of 8041 reviewed papers, which have been published in notable journals. This paper discusses the process carried out in this systematic review, as well as the results and findings obtained to identify the current state of the art of web anomaly detection.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su12124945</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anomalies ; Cloud computing ; Datasets ; Deep learning ; International organizations ; Intrusion detection systems ; Literature reviews ; Methods ; Prevention ; Reviews ; Statistical analysis ; Studies ; Sustainability ; Systematic review</subject><ispartof>Sustainability, 2020-06, Vol.12 (12), p.4945</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93</citedby><cites>FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93</cites><orcidid>0000-0002-0197-8663 ; 0000-0002-1507-6273 ; 0000-0003-3681-2572 ; 0000-0002-2351-7163 ; 0000-0002-5962-4147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2415197181/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2415197181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sureda Riera, Tomás</creatorcontrib><creatorcontrib>Bermejo Higuera, Juan-Ramón</creatorcontrib><creatorcontrib>Bermejo Higuera, Javier</creatorcontrib><creatorcontrib>Martínez Herraiz, José-Javier</creatorcontrib><creatorcontrib>Sicilia Montalvo, Juan-Antonio</creatorcontrib><title>Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review</title><title>Sustainability</title><description>Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review of the use of anomaly detection techniques in the prevention and detection of web attacks is undertaken; in particular, we used the standardized method of a systematic review of literature in the field of computer science, proposed by Kitchenham. This method is applied to a set of 88 papers extracted from a total of 8041 reviewed papers, which have been published in notable journals. This paper discusses the process carried out in this systematic review, as well as the results and findings obtained to identify the current state of the art of web anomaly detection.</description><subject>Anomalies</subject><subject>Cloud computing</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>International organizations</subject><subject>Intrusion detection systems</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Prevention</subject><subject>Reviews</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Sustainability</subject><subject>Systematic review</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUEtLAzEYDKJgqb34CwLehNZ8SfaR41KfUFC04nHJJtlHbZOaZCv7761W0LnMHOYBg9A5kBljglyFHihQLnhyhEaUZDAFkpDjf_oUTUJYkT0YAwHpCJknb3bGxs5ZLK3Gt13Txs42WDaysyHiN1PhIkap3gOOrXd90-LCuo1cD_jaRKN-okujWuvWrhlmuMAvQ4hmI2On8LPZdebzDJ3Uch3M5JfH6PX2Zjm_ny4e7x7mxWKqqEjiFDhNtDYCoEq1TqUgIstUKqhKZUo1ZblUItWmrvMsZ1xzyXOdVzWDKuOqEmyMLg69W-8-ehNiuXK9t_vJknJIQGSQw951eXAp70Lwpi63vttIP5RAyu8ny78n2RcOCWY4</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Sureda Riera, Tomás</creator><creator>Bermejo Higuera, Juan-Ramón</creator><creator>Bermejo Higuera, Javier</creator><creator>Martínez Herraiz, José-Javier</creator><creator>Sicilia Montalvo, Juan-Antonio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0197-8663</orcidid><orcidid>https://orcid.org/0000-0002-1507-6273</orcidid><orcidid>https://orcid.org/0000-0003-3681-2572</orcidid><orcidid>https://orcid.org/0000-0002-2351-7163</orcidid><orcidid>https://orcid.org/0000-0002-5962-4147</orcidid></search><sort><creationdate>20200601</creationdate><title>Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review</title><author>Sureda Riera, Tomás ; Bermejo Higuera, Juan-Ramón ; Bermejo Higuera, Javier ; Martínez Herraiz, José-Javier ; Sicilia Montalvo, Juan-Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Cloud computing</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>International organizations</topic><topic>Intrusion detection systems</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Prevention</topic><topic>Reviews</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Sustainability</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sureda Riera, Tomás</creatorcontrib><creatorcontrib>Bermejo Higuera, Juan-Ramón</creatorcontrib><creatorcontrib>Bermejo Higuera, Javier</creatorcontrib><creatorcontrib>Martínez Herraiz, José-Javier</creatorcontrib><creatorcontrib>Sicilia Montalvo, Juan-Antonio</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sureda Riera, Tomás</au><au>Bermejo Higuera, Juan-Ramón</au><au>Bermejo Higuera, Javier</au><au>Martínez Herraiz, José-Javier</au><au>Sicilia Montalvo, Juan-Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review</atitle><jtitle>Sustainability</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>4945</spage><pages>4945-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review of the use of anomaly detection techniques in the prevention and detection of web attacks is undertaken; in particular, we used the standardized method of a systematic review of literature in the field of computer science, proposed by Kitchenham. This method is applied to a set of 88 papers extracted from a total of 8041 reviewed papers, which have been published in notable journals. This paper discusses the process carried out in this systematic review, as well as the results and findings obtained to identify the current state of the art of web anomaly detection.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su12124945</doi><orcidid>https://orcid.org/0000-0002-0197-8663</orcidid><orcidid>https://orcid.org/0000-0002-1507-6273</orcidid><orcidid>https://orcid.org/0000-0003-3681-2572</orcidid><orcidid>https://orcid.org/0000-0002-2351-7163</orcidid><orcidid>https://orcid.org/0000-0002-5962-4147</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2020-06, Vol.12 (12), p.4945
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2415197181
source ProQuest Publicly Available Content database
subjects Anomalies
Cloud computing
Datasets
Deep learning
International organizations
Intrusion detection systems
Literature reviews
Methods
Prevention
Reviews
Statistical analysis
Studies
Sustainability
Systematic review
title Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevention%20and%20Fighting%20against%20Web%20Attacks%20through%20Anomaly%20Detection%20Technology.%20A%20Systematic%20Review&rft.jtitle=Sustainability&rft.au=Sureda%20Riera,%20Tom%C3%A1s&rft.date=2020-06-01&rft.volume=12&rft.issue=12&rft.spage=4945&rft.pages=4945-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su12124945&rft_dat=%3Cproquest_cross%3E2415197181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415197181&rft_id=info:pmid/&rfr_iscdi=true