Loading…
Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review
Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review o...
Saved in:
Published in: | Sustainability 2020-06, Vol.12 (12), p.4945 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93 |
container_end_page | |
container_issue | 12 |
container_start_page | 4945 |
container_title | Sustainability |
container_volume | 12 |
creator | Sureda Riera, Tomás Bermejo Higuera, Juan-Ramón Bermejo Higuera, Javier Martínez Herraiz, José-Javier Sicilia Montalvo, Juan-Antonio |
description | Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review of the use of anomaly detection techniques in the prevention and detection of web attacks is undertaken; in particular, we used the standardized method of a systematic review of literature in the field of computer science, proposed by Kitchenham. This method is applied to a set of 88 papers extracted from a total of 8041 reviewed papers, which have been published in notable journals. This paper discusses the process carried out in this systematic review, as well as the results and findings obtained to identify the current state of the art of web anomaly detection. |
doi_str_mv | 10.3390/su12124945 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415197181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415197181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93</originalsourceid><addsrcrecordid>eNpNUEtLAzEYDKJgqb34CwLehNZ8SfaR41KfUFC04nHJJtlHbZOaZCv7761W0LnMHOYBg9A5kBljglyFHihQLnhyhEaUZDAFkpDjf_oUTUJYkT0YAwHpCJknb3bGxs5ZLK3Gt13Txs42WDaysyHiN1PhIkap3gOOrXd90-LCuo1cD_jaRKN-okujWuvWrhlmuMAvQ4hmI2On8LPZdebzDJ3Uch3M5JfH6PX2Zjm_ny4e7x7mxWKqqEjiFDhNtDYCoEq1TqUgIstUKqhKZUo1ZblUItWmrvMsZ1xzyXOdVzWDKuOqEmyMLg69W-8-ehNiuXK9t_vJknJIQGSQw951eXAp70Lwpi63vttIP5RAyu8ny78n2RcOCWY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415197181</pqid></control><display><type>article</type><title>Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review</title><source>ProQuest Publicly Available Content database</source><creator>Sureda Riera, Tomás ; Bermejo Higuera, Juan-Ramón ; Bermejo Higuera, Javier ; Martínez Herraiz, José-Javier ; Sicilia Montalvo, Juan-Antonio</creator><creatorcontrib>Sureda Riera, Tomás ; Bermejo Higuera, Juan-Ramón ; Bermejo Higuera, Javier ; Martínez Herraiz, José-Javier ; Sicilia Montalvo, Juan-Antonio</creatorcontrib><description>Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review of the use of anomaly detection techniques in the prevention and detection of web attacks is undertaken; in particular, we used the standardized method of a systematic review of literature in the field of computer science, proposed by Kitchenham. This method is applied to a set of 88 papers extracted from a total of 8041 reviewed papers, which have been published in notable journals. This paper discusses the process carried out in this systematic review, as well as the results and findings obtained to identify the current state of the art of web anomaly detection.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su12124945</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anomalies ; Cloud computing ; Datasets ; Deep learning ; International organizations ; Intrusion detection systems ; Literature reviews ; Methods ; Prevention ; Reviews ; Statistical analysis ; Studies ; Sustainability ; Systematic review</subject><ispartof>Sustainability, 2020-06, Vol.12 (12), p.4945</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93</citedby><cites>FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93</cites><orcidid>0000-0002-0197-8663 ; 0000-0002-1507-6273 ; 0000-0003-3681-2572 ; 0000-0002-2351-7163 ; 0000-0002-5962-4147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2415197181/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2415197181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sureda Riera, Tomás</creatorcontrib><creatorcontrib>Bermejo Higuera, Juan-Ramón</creatorcontrib><creatorcontrib>Bermejo Higuera, Javier</creatorcontrib><creatorcontrib>Martínez Herraiz, José-Javier</creatorcontrib><creatorcontrib>Sicilia Montalvo, Juan-Antonio</creatorcontrib><title>Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review</title><title>Sustainability</title><description>Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review of the use of anomaly detection techniques in the prevention and detection of web attacks is undertaken; in particular, we used the standardized method of a systematic review of literature in the field of computer science, proposed by Kitchenham. This method is applied to a set of 88 papers extracted from a total of 8041 reviewed papers, which have been published in notable journals. This paper discusses the process carried out in this systematic review, as well as the results and findings obtained to identify the current state of the art of web anomaly detection.</description><subject>Anomalies</subject><subject>Cloud computing</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>International organizations</subject><subject>Intrusion detection systems</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Prevention</subject><subject>Reviews</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Sustainability</subject><subject>Systematic review</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUEtLAzEYDKJgqb34CwLehNZ8SfaR41KfUFC04nHJJtlHbZOaZCv7761W0LnMHOYBg9A5kBljglyFHihQLnhyhEaUZDAFkpDjf_oUTUJYkT0YAwHpCJknb3bGxs5ZLK3Gt13Txs42WDaysyHiN1PhIkap3gOOrXd90-LCuo1cD_jaRKN-okujWuvWrhlmuMAvQ4hmI2On8LPZdebzDJ3Uch3M5JfH6PX2Zjm_ny4e7x7mxWKqqEjiFDhNtDYCoEq1TqUgIstUKqhKZUo1ZblUItWmrvMsZ1xzyXOdVzWDKuOqEmyMLg69W-8-ehNiuXK9t_vJknJIQGSQw951eXAp70Lwpi63vttIP5RAyu8ny78n2RcOCWY4</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Sureda Riera, Tomás</creator><creator>Bermejo Higuera, Juan-Ramón</creator><creator>Bermejo Higuera, Javier</creator><creator>Martínez Herraiz, José-Javier</creator><creator>Sicilia Montalvo, Juan-Antonio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0197-8663</orcidid><orcidid>https://orcid.org/0000-0002-1507-6273</orcidid><orcidid>https://orcid.org/0000-0003-3681-2572</orcidid><orcidid>https://orcid.org/0000-0002-2351-7163</orcidid><orcidid>https://orcid.org/0000-0002-5962-4147</orcidid></search><sort><creationdate>20200601</creationdate><title>Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review</title><author>Sureda Riera, Tomás ; Bermejo Higuera, Juan-Ramón ; Bermejo Higuera, Javier ; Martínez Herraiz, José-Javier ; Sicilia Montalvo, Juan-Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Cloud computing</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>International organizations</topic><topic>Intrusion detection systems</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Prevention</topic><topic>Reviews</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Sustainability</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sureda Riera, Tomás</creatorcontrib><creatorcontrib>Bermejo Higuera, Juan-Ramón</creatorcontrib><creatorcontrib>Bermejo Higuera, Javier</creatorcontrib><creatorcontrib>Martínez Herraiz, José-Javier</creatorcontrib><creatorcontrib>Sicilia Montalvo, Juan-Antonio</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sureda Riera, Tomás</au><au>Bermejo Higuera, Juan-Ramón</au><au>Bermejo Higuera, Javier</au><au>Martínez Herraiz, José-Javier</au><au>Sicilia Montalvo, Juan-Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review</atitle><jtitle>Sustainability</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>4945</spage><pages>4945-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Numerous techniques have been developed in order to prevent attacks on web servers. Anomaly detection techniques are based on models of normal user and application behavior, interpreting deviations from the established pattern as indications of malicious activity. In this work, a systematic review of the use of anomaly detection techniques in the prevention and detection of web attacks is undertaken; in particular, we used the standardized method of a systematic review of literature in the field of computer science, proposed by Kitchenham. This method is applied to a set of 88 papers extracted from a total of 8041 reviewed papers, which have been published in notable journals. This paper discusses the process carried out in this systematic review, as well as the results and findings obtained to identify the current state of the art of web anomaly detection.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su12124945</doi><orcidid>https://orcid.org/0000-0002-0197-8663</orcidid><orcidid>https://orcid.org/0000-0002-1507-6273</orcidid><orcidid>https://orcid.org/0000-0003-3681-2572</orcidid><orcidid>https://orcid.org/0000-0002-2351-7163</orcidid><orcidid>https://orcid.org/0000-0002-5962-4147</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2020-06, Vol.12 (12), p.4945 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2415197181 |
source | ProQuest Publicly Available Content database |
subjects | Anomalies Cloud computing Datasets Deep learning International organizations Intrusion detection systems Literature reviews Methods Prevention Reviews Statistical analysis Studies Sustainability Systematic review |
title | Prevention and Fighting against Web Attacks through Anomaly Detection Technology. A Systematic Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevention%20and%20Fighting%20against%20Web%20Attacks%20through%20Anomaly%20Detection%20Technology.%20A%20Systematic%20Review&rft.jtitle=Sustainability&rft.au=Sureda%20Riera,%20Tom%C3%A1s&rft.date=2020-06-01&rft.volume=12&rft.issue=12&rft.spage=4945&rft.pages=4945-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su12124945&rft_dat=%3Cproquest_cross%3E2415197181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-1425dde911b6dd6a90977c692c6a62d238ac96deff87834d4a48d8bf31b74cb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415197181&rft_id=info:pmid/&rfr_iscdi=true |