Loading…

Basal ganglia calcification induced by excitotoxicity : an experimental model characterised by electron microscopy and X-ray microanalysis

Activation of glutamate receptors induces an excitotoxic neurodegenerative process characterised in some brain areas by the formation of calcium precipitates. To examine the pathogenesis of basal ganglia calcification (BGC), an improved procedure of X-ray microanalysis was used to study experimental...

Full description

Saved in:
Bibliographic Details
Published in:Acta neuropathologica 1999-09, Vol.98 (3), p.217-225
Main Authors: MAHY, N, PRATS, A, RIVEROS, A, ANDRES, N, BERNAL, F
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Activation of glutamate receptors induces an excitotoxic neurodegenerative process characterised in some brain areas by the formation of calcium precipitates. To examine the pathogenesis of basal ganglia calcification (BGC), an improved procedure of X-ray microanalysis was used to study experimental excitotoxic calcification in the rat. Three weeks after injection of ibotenic acid (IBO) in the rat basal forebrain, calcified inclusions within hypertrophied astrocytes were characterised. They appeared to form part of a filamentous structure localised in the cytoplasm in association with normal mitochondria and other organelles. Larger inclusions were surrounded by reactive microglia. The main inorganic components in these deposits were Ca and P, frequently accompanied by S. Al, Si and K. The shape and Ca/P molar ratio of the large deposits (>10 microm) indicate that they may be biological apatites. Aluminosilicates were detected as small deposits (
ISSN:0001-6322
1432-0533
DOI:10.1007/s004010051072