Loading…
On new existence of a unique common solution to a pair of non-linear matrix equations
The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} w...
Saved in:
Published in: | arXiv.org 2020-06 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Garai, Hiranmoy Dey, Lakshmi Kanta Sintunavarat, Wutiphol Som, Sumit Raha, Sayandeepa |
description | The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} where \(Q_1,Q_2\in P(n)\), \(A_i\in M(n)\) and \(F,G:P(n)\to P(n)\) are certain functions and \(r,s>1\). In order to achieve our target, we take the help of elegant properties of Thompson metric on the set of all \(n \times n\) Hermitian positive definite matrices. To proceed this, we first derive a common fixed point result for a pair of mappings utilizing a certain class of control functions in a metric space. Then, we obtain some sufficient conditions to assure a unique positive definite common solution to the said equations. Finally, to validate our results, we provide a couple of numerical examples with diagrammatic representations of the convergence behaviour of iterative sequences. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2415571313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415571313</sourcerecordid><originalsourceid>FETCH-proquest_journals_24155713133</originalsourceid><addsrcrecordid>eNqNjM0KgkAURocgSMp3uNBa0Bkn20fRrk2tZYgrjOi9Oj_k4zdCD9DqO3AO30ZkUqmqONdS7kTufV-WpTw1UmuVideDgPADuFgfkN4I3IGBSHaOCG8eRybwPMRgEwRObjLWrRUxFYMlNA5GE5xdAOdo1s4fxLYzg8f8t3txvF2fl3sxOU6_PrQ9R0dJtbKutG4qVSn1X_UFn59Aog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415571313</pqid></control><display><type>article</type><title>On new existence of a unique common solution to a pair of non-linear matrix equations</title><source>Publicly Available Content Database</source><creator>Garai, Hiranmoy ; Dey, Lakshmi Kanta ; Sintunavarat, Wutiphol ; Som, Sumit ; Raha, Sayandeepa</creator><creatorcontrib>Garai, Hiranmoy ; Dey, Lakshmi Kanta ; Sintunavarat, Wutiphol ; Som, Sumit ; Raha, Sayandeepa</creatorcontrib><description>The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} where \(Q_1,Q_2\in P(n)\), \(A_i\in M(n)\) and \(F,G:P(n)\to P(n)\) are certain functions and \(r,s>1\). In order to achieve our target, we take the help of elegant properties of Thompson metric on the set of all \(n \times n\) Hermitian positive definite matrices. To proceed this, we first derive a common fixed point result for a pair of mappings utilizing a certain class of control functions in a metric space. Then, we obtain some sufficient conditions to assure a unique positive definite common solution to the said equations. Finally, to validate our results, we provide a couple of numerical examples with diagrammatic representations of the convergence behaviour of iterative sequences.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Iterative methods ; Mathematical analysis ; Matrix methods ; Metric space ; Nonlinear equations</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2415571313?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Garai, Hiranmoy</creatorcontrib><creatorcontrib>Dey, Lakshmi Kanta</creatorcontrib><creatorcontrib>Sintunavarat, Wutiphol</creatorcontrib><creatorcontrib>Som, Sumit</creatorcontrib><creatorcontrib>Raha, Sayandeepa</creatorcontrib><title>On new existence of a unique common solution to a pair of non-linear matrix equations</title><title>arXiv.org</title><description>The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} where \(Q_1,Q_2\in P(n)\), \(A_i\in M(n)\) and \(F,G:P(n)\to P(n)\) are certain functions and \(r,s>1\). In order to achieve our target, we take the help of elegant properties of Thompson metric on the set of all \(n \times n\) Hermitian positive definite matrices. To proceed this, we first derive a common fixed point result for a pair of mappings utilizing a certain class of control functions in a metric space. Then, we obtain some sufficient conditions to assure a unique positive definite common solution to the said equations. Finally, to validate our results, we provide a couple of numerical examples with diagrammatic representations of the convergence behaviour of iterative sequences.</description><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Metric space</subject><subject>Nonlinear equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjM0KgkAURocgSMp3uNBa0Bkn20fRrk2tZYgrjOi9Oj_k4zdCD9DqO3AO30ZkUqmqONdS7kTufV-WpTw1UmuVideDgPADuFgfkN4I3IGBSHaOCG8eRybwPMRgEwRObjLWrRUxFYMlNA5GE5xdAOdo1s4fxLYzg8f8t3txvF2fl3sxOU6_PrQ9R0dJtbKutG4qVSn1X_UFn59Aog</recordid><startdate>20200618</startdate><enddate>20200618</enddate><creator>Garai, Hiranmoy</creator><creator>Dey, Lakshmi Kanta</creator><creator>Sintunavarat, Wutiphol</creator><creator>Som, Sumit</creator><creator>Raha, Sayandeepa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200618</creationdate><title>On new existence of a unique common solution to a pair of non-linear matrix equations</title><author>Garai, Hiranmoy ; Dey, Lakshmi Kanta ; Sintunavarat, Wutiphol ; Som, Sumit ; Raha, Sayandeepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24155713133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Metric space</topic><topic>Nonlinear equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Garai, Hiranmoy</creatorcontrib><creatorcontrib>Dey, Lakshmi Kanta</creatorcontrib><creatorcontrib>Sintunavarat, Wutiphol</creatorcontrib><creatorcontrib>Som, Sumit</creatorcontrib><creatorcontrib>Raha, Sayandeepa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garai, Hiranmoy</au><au>Dey, Lakshmi Kanta</au><au>Sintunavarat, Wutiphol</au><au>Som, Sumit</au><au>Raha, Sayandeepa</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On new existence of a unique common solution to a pair of non-linear matrix equations</atitle><jtitle>arXiv.org</jtitle><date>2020-06-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} where \(Q_1,Q_2\in P(n)\), \(A_i\in M(n)\) and \(F,G:P(n)\to P(n)\) are certain functions and \(r,s>1\). In order to achieve our target, we take the help of elegant properties of Thompson metric on the set of all \(n \times n\) Hermitian positive definite matrices. To proceed this, we first derive a common fixed point result for a pair of mappings utilizing a certain class of control functions in a metric space. Then, we obtain some sufficient conditions to assure a unique positive definite common solution to the said equations. Finally, to validate our results, we provide a couple of numerical examples with diagrammatic representations of the convergence behaviour of iterative sequences.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2415571313 |
source | Publicly Available Content Database |
subjects | Iterative methods Mathematical analysis Matrix methods Metric space Nonlinear equations |
title | On new existence of a unique common solution to a pair of non-linear matrix equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20new%20existence%20of%20a%20unique%20common%20solution%20to%20a%20pair%20of%20non-linear%20matrix%20equations&rft.jtitle=arXiv.org&rft.au=Garai,%20Hiranmoy&rft.date=2020-06-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2415571313%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24155713133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415571313&rft_id=info:pmid/&rfr_iscdi=true |