Loading…

On new existence of a unique common solution to a pair of non-linear matrix equations

The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-06
Main Authors: Garai, Hiranmoy, Dey, Lakshmi Kanta, Sintunavarat, Wutiphol, Som, Sumit, Raha, Sayandeepa
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Garai, Hiranmoy
Dey, Lakshmi Kanta
Sintunavarat, Wutiphol
Som, Sumit
Raha, Sayandeepa
description The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} where \(Q_1,Q_2\in P(n)\), \(A_i\in M(n)\) and \(F,G:P(n)\to P(n)\) are certain functions and \(r,s>1\). In order to achieve our target, we take the help of elegant properties of Thompson metric on the set of all \(n \times n\) Hermitian positive definite matrices. To proceed this, we first derive a common fixed point result for a pair of mappings utilizing a certain class of control functions in a metric space. Then, we obtain some sufficient conditions to assure a unique positive definite common solution to the said equations. Finally, to validate our results, we provide a couple of numerical examples with diagrammatic representations of the convergence behaviour of iterative sequences.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2415571313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415571313</sourcerecordid><originalsourceid>FETCH-proquest_journals_24155713133</originalsourceid><addsrcrecordid>eNqNjM0KgkAURocgSMp3uNBa0Bkn20fRrk2tZYgrjOi9Oj_k4zdCD9DqO3AO30ZkUqmqONdS7kTufV-WpTw1UmuVideDgPADuFgfkN4I3IGBSHaOCG8eRybwPMRgEwRObjLWrRUxFYMlNA5GE5xdAOdo1s4fxLYzg8f8t3txvF2fl3sxOU6_PrQ9R0dJtbKutG4qVSn1X_UFn59Aog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415571313</pqid></control><display><type>article</type><title>On new existence of a unique common solution to a pair of non-linear matrix equations</title><source>Publicly Available Content Database</source><creator>Garai, Hiranmoy ; Dey, Lakshmi Kanta ; Sintunavarat, Wutiphol ; Som, Sumit ; Raha, Sayandeepa</creator><creatorcontrib>Garai, Hiranmoy ; Dey, Lakshmi Kanta ; Sintunavarat, Wutiphol ; Som, Sumit ; Raha, Sayandeepa</creatorcontrib><description>The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} where \(Q_1,Q_2\in P(n)\), \(A_i\in M(n)\) and \(F,G:P(n)\to P(n)\) are certain functions and \(r,s&gt;1\). In order to achieve our target, we take the help of elegant properties of Thompson metric on the set of all \(n \times n\) Hermitian positive definite matrices. To proceed this, we first derive a common fixed point result for a pair of mappings utilizing a certain class of control functions in a metric space. Then, we obtain some sufficient conditions to assure a unique positive definite common solution to the said equations. Finally, to validate our results, we provide a couple of numerical examples with diagrammatic representations of the convergence behaviour of iterative sequences.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Iterative methods ; Mathematical analysis ; Matrix methods ; Metric space ; Nonlinear equations</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2415571313?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Garai, Hiranmoy</creatorcontrib><creatorcontrib>Dey, Lakshmi Kanta</creatorcontrib><creatorcontrib>Sintunavarat, Wutiphol</creatorcontrib><creatorcontrib>Som, Sumit</creatorcontrib><creatorcontrib>Raha, Sayandeepa</creatorcontrib><title>On new existence of a unique common solution to a pair of non-linear matrix equations</title><title>arXiv.org</title><description>The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} where \(Q_1,Q_2\in P(n)\), \(A_i\in M(n)\) and \(F,G:P(n)\to P(n)\) are certain functions and \(r,s&gt;1\). In order to achieve our target, we take the help of elegant properties of Thompson metric on the set of all \(n \times n\) Hermitian positive definite matrices. To proceed this, we first derive a common fixed point result for a pair of mappings utilizing a certain class of control functions in a metric space. Then, we obtain some sufficient conditions to assure a unique positive definite common solution to the said equations. Finally, to validate our results, we provide a couple of numerical examples with diagrammatic representations of the convergence behaviour of iterative sequences.</description><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Metric space</subject><subject>Nonlinear equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjM0KgkAURocgSMp3uNBa0Bkn20fRrk2tZYgrjOi9Oj_k4zdCD9DqO3AO30ZkUqmqONdS7kTufV-WpTw1UmuVideDgPADuFgfkN4I3IGBSHaOCG8eRybwPMRgEwRObjLWrRUxFYMlNA5GE5xdAOdo1s4fxLYzg8f8t3txvF2fl3sxOU6_PrQ9R0dJtbKutG4qVSn1X_UFn59Aog</recordid><startdate>20200618</startdate><enddate>20200618</enddate><creator>Garai, Hiranmoy</creator><creator>Dey, Lakshmi Kanta</creator><creator>Sintunavarat, Wutiphol</creator><creator>Som, Sumit</creator><creator>Raha, Sayandeepa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200618</creationdate><title>On new existence of a unique common solution to a pair of non-linear matrix equations</title><author>Garai, Hiranmoy ; Dey, Lakshmi Kanta ; Sintunavarat, Wutiphol ; Som, Sumit ; Raha, Sayandeepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24155713133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Metric space</topic><topic>Nonlinear equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Garai, Hiranmoy</creatorcontrib><creatorcontrib>Dey, Lakshmi Kanta</creatorcontrib><creatorcontrib>Sintunavarat, Wutiphol</creatorcontrib><creatorcontrib>Som, Sumit</creatorcontrib><creatorcontrib>Raha, Sayandeepa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garai, Hiranmoy</au><au>Dey, Lakshmi Kanta</au><au>Sintunavarat, Wutiphol</au><au>Som, Sumit</au><au>Raha, Sayandeepa</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On new existence of a unique common solution to a pair of non-linear matrix equations</atitle><jtitle>arXiv.org</jtitle><date>2020-06-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The main goal of this article is to study the existence of a unique positive definite common solution to a pair of matrix equations of the form \begin{eqnarray*} X^r=Q_1 + \displaystyle \sum_{i=1}^{m} {A_i}^*F(X)A_i \mbox{ and } X^s=Q_2 + \displaystyle \sum_{i=1}^{m} {A_i}^*G(X)A_i \end{eqnarray*} where \(Q_1,Q_2\in P(n)\), \(A_i\in M(n)\) and \(F,G:P(n)\to P(n)\) are certain functions and \(r,s&gt;1\). In order to achieve our target, we take the help of elegant properties of Thompson metric on the set of all \(n \times n\) Hermitian positive definite matrices. To proceed this, we first derive a common fixed point result for a pair of mappings utilizing a certain class of control functions in a metric space. Then, we obtain some sufficient conditions to assure a unique positive definite common solution to the said equations. Finally, to validate our results, we provide a couple of numerical examples with diagrammatic representations of the convergence behaviour of iterative sequences.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2415571313
source Publicly Available Content Database
subjects Iterative methods
Mathematical analysis
Matrix methods
Metric space
Nonlinear equations
title On new existence of a unique common solution to a pair of non-linear matrix equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20new%20existence%20of%20a%20unique%20common%20solution%20to%20a%20pair%20of%20non-linear%20matrix%20equations&rft.jtitle=arXiv.org&rft.au=Garai,%20Hiranmoy&rft.date=2020-06-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2415571313%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24155713133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415571313&rft_id=info:pmid/&rfr_iscdi=true