Loading…
The Light Ray Transform on Lorentzian Manifolds
We study the weighted light ray transform L of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function f from its the weighted light...
Saved in:
Published in: | Communications in mathematical physics 2020-07, Vol.377 (2), p.1349-1379 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973 |
container_end_page | 1379 |
container_issue | 2 |
container_start_page | 1349 |
container_title | Communications in mathematical physics |
container_volume | 377 |
creator | Lassas, Matti Oksanen, Lauri Stefanov, Plamen Uhlmann, Gunther |
description | We study the weighted light ray transform
L
of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze
L
as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function
f
from its the weighted light ray transform
Lf
by a suitable filtered back-projection. |
doi_str_mv | 10.1007/s00220-020-03703-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415854209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415854209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wNWA69ibZJJMllJ8wYggdR1iHu2UNqnJdFF_vTOM4M7F4W6-71w4CN0QuCMAcl4AKAUMY5gEhsUJmpGaUQyKiFM0AyCAmSDiHF2UsgEARYWYofly7au2W6376t0cq2U2sYSUd1WKVZuyj_13Z2L1amIX0taVK3QWzLb46997iT4eH5aLZ9y-Pb0s7ltsGVE9loYzGpgMUAfROOsNF4GG4JzzkiviGSPOGEokWM6dFapprGrsJ1O-kUqyS3Q79e5z-jr40utNOuQ4vNS0JrzhNQU1UHSibE6lZB_0Pnc7k4-agB6H0dMwGsaMw2gxSGySygDHlc9_1f9YPxmkZGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415854209</pqid></control><display><type>article</type><title>The Light Ray Transform on Lorentzian Manifolds</title><source>Springer Link</source><creator>Lassas, Matti ; Oksanen, Lauri ; Stefanov, Plamen ; Uhlmann, Gunther</creator><creatorcontrib>Lassas, Matti ; Oksanen, Lauri ; Stefanov, Plamen ; Uhlmann, Gunther</creatorcontrib><description>We study the weighted light ray transform
L
of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze
L
as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function
f
from its the weighted light ray transform
Lf
by a suitable filtered back-projection.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-020-03703-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Conjugate points ; Geodesy ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-07, Vol.377 (2), p.1349-1379</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973</citedby><cites>FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973</cites><orcidid>0000-0002-8544-3411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lassas, Matti</creatorcontrib><creatorcontrib>Oksanen, Lauri</creatorcontrib><creatorcontrib>Stefanov, Plamen</creatorcontrib><creatorcontrib>Uhlmann, Gunther</creatorcontrib><title>The Light Ray Transform on Lorentzian Manifolds</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We study the weighted light ray transform
L
of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze
L
as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function
f
from its the weighted light ray transform
Lf
by a suitable filtered back-projection.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Conjugate points</subject><subject>Geodesy</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB9_wNWA69ibZJJMllJ8wYggdR1iHu2UNqnJdFF_vTOM4M7F4W6-71w4CN0QuCMAcl4AKAUMY5gEhsUJmpGaUQyKiFM0AyCAmSDiHF2UsgEARYWYofly7au2W6376t0cq2U2sYSUd1WKVZuyj_13Z2L1amIX0taVK3QWzLb46997iT4eH5aLZ9y-Pb0s7ltsGVE9loYzGpgMUAfROOsNF4GG4JzzkiviGSPOGEokWM6dFapprGrsJ1O-kUqyS3Q79e5z-jr40utNOuQ4vNS0JrzhNQU1UHSibE6lZB_0Pnc7k4-agB6H0dMwGsaMw2gxSGySygDHlc9_1f9YPxmkZGc</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Lassas, Matti</creator><creator>Oksanen, Lauri</creator><creator>Stefanov, Plamen</creator><creator>Uhlmann, Gunther</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8544-3411</orcidid></search><sort><creationdate>20200701</creationdate><title>The Light Ray Transform on Lorentzian Manifolds</title><author>Lassas, Matti ; Oksanen, Lauri ; Stefanov, Plamen ; Uhlmann, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Conjugate points</topic><topic>Geodesy</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lassas, Matti</creatorcontrib><creatorcontrib>Oksanen, Lauri</creatorcontrib><creatorcontrib>Stefanov, Plamen</creatorcontrib><creatorcontrib>Uhlmann, Gunther</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lassas, Matti</au><au>Oksanen, Lauri</au><au>Stefanov, Plamen</au><au>Uhlmann, Gunther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Light Ray Transform on Lorentzian Manifolds</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>377</volume><issue>2</issue><spage>1349</spage><epage>1379</epage><pages>1349-1379</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We study the weighted light ray transform
L
of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze
L
as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function
f
from its the weighted light ray transform
Lf
by a suitable filtered back-projection.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-020-03703-6</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-8544-3411</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2020-07, Vol.377 (2), p.1349-1379 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2415854209 |
source | Springer Link |
subjects | Classical and Quantum Gravitation Complex Systems Conjugate points Geodesy Manifolds (mathematics) Mathematical and Computational Physics Mathematical Physics Operators (mathematics) Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | The Light Ray Transform on Lorentzian Manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Light%20Ray%20Transform%20on%20Lorentzian%20Manifolds&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Lassas,%20Matti&rft.date=2020-07-01&rft.volume=377&rft.issue=2&rft.spage=1349&rft.epage=1379&rft.pages=1349-1379&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-020-03703-6&rft_dat=%3Cproquest_cross%3E2415854209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415854209&rft_id=info:pmid/&rfr_iscdi=true |