Loading…

The Light Ray Transform on Lorentzian Manifolds

We study the weighted light ray transform L of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function f from its the weighted light...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2020-07, Vol.377 (2), p.1349-1379
Main Authors: Lassas, Matti, Oksanen, Lauri, Stefanov, Plamen, Uhlmann, Gunther
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973
cites cdi_FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973
container_end_page 1379
container_issue 2
container_start_page 1349
container_title Communications in mathematical physics
container_volume 377
creator Lassas, Matti
Oksanen, Lauri
Stefanov, Plamen
Uhlmann, Gunther
description We study the weighted light ray transform L of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function f from its the weighted light ray transform Lf by a suitable filtered back-projection.
doi_str_mv 10.1007/s00220-020-03703-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415854209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415854209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wNWA69ibZJJMllJ8wYggdR1iHu2UNqnJdFF_vTOM4M7F4W6-71w4CN0QuCMAcl4AKAUMY5gEhsUJmpGaUQyKiFM0AyCAmSDiHF2UsgEARYWYofly7au2W6376t0cq2U2sYSUd1WKVZuyj_13Z2L1amIX0taVK3QWzLb46997iT4eH5aLZ9y-Pb0s7ltsGVE9loYzGpgMUAfROOsNF4GG4JzzkiviGSPOGEokWM6dFapprGrsJ1O-kUqyS3Q79e5z-jr40utNOuQ4vNS0JrzhNQU1UHSibE6lZB_0Pnc7k4-agB6H0dMwGsaMw2gxSGySygDHlc9_1f9YPxmkZGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415854209</pqid></control><display><type>article</type><title>The Light Ray Transform on Lorentzian Manifolds</title><source>Springer Link</source><creator>Lassas, Matti ; Oksanen, Lauri ; Stefanov, Plamen ; Uhlmann, Gunther</creator><creatorcontrib>Lassas, Matti ; Oksanen, Lauri ; Stefanov, Plamen ; Uhlmann, Gunther</creatorcontrib><description>We study the weighted light ray transform L of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function f from its the weighted light ray transform Lf by a suitable filtered back-projection.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-020-03703-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Conjugate points ; Geodesy ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-07, Vol.377 (2), p.1349-1379</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973</citedby><cites>FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973</cites><orcidid>0000-0002-8544-3411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lassas, Matti</creatorcontrib><creatorcontrib>Oksanen, Lauri</creatorcontrib><creatorcontrib>Stefanov, Plamen</creatorcontrib><creatorcontrib>Uhlmann, Gunther</creatorcontrib><title>The Light Ray Transform on Lorentzian Manifolds</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We study the weighted light ray transform L of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function f from its the weighted light ray transform Lf by a suitable filtered back-projection.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Conjugate points</subject><subject>Geodesy</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB9_wNWA69ibZJJMllJ8wYggdR1iHu2UNqnJdFF_vTOM4M7F4W6-71w4CN0QuCMAcl4AKAUMY5gEhsUJmpGaUQyKiFM0AyCAmSDiHF2UsgEARYWYofly7au2W6376t0cq2U2sYSUd1WKVZuyj_13Z2L1amIX0taVK3QWzLb46997iT4eH5aLZ9y-Pb0s7ltsGVE9loYzGpgMUAfROOsNF4GG4JzzkiviGSPOGEokWM6dFapprGrsJ1O-kUqyS3Q79e5z-jr40utNOuQ4vNS0JrzhNQU1UHSibE6lZB_0Pnc7k4-agB6H0dMwGsaMw2gxSGySygDHlc9_1f9YPxmkZGc</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Lassas, Matti</creator><creator>Oksanen, Lauri</creator><creator>Stefanov, Plamen</creator><creator>Uhlmann, Gunther</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8544-3411</orcidid></search><sort><creationdate>20200701</creationdate><title>The Light Ray Transform on Lorentzian Manifolds</title><author>Lassas, Matti ; Oksanen, Lauri ; Stefanov, Plamen ; Uhlmann, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Conjugate points</topic><topic>Geodesy</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lassas, Matti</creatorcontrib><creatorcontrib>Oksanen, Lauri</creatorcontrib><creatorcontrib>Stefanov, Plamen</creatorcontrib><creatorcontrib>Uhlmann, Gunther</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lassas, Matti</au><au>Oksanen, Lauri</au><au>Stefanov, Plamen</au><au>Uhlmann, Gunther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Light Ray Transform on Lorentzian Manifolds</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>377</volume><issue>2</issue><spage>1349</spage><epage>1379</epage><pages>1349-1379</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We study the weighted light ray transform L of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function f from its the weighted light ray transform Lf by a suitable filtered back-projection.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-020-03703-6</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-8544-3411</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2020-07, Vol.377 (2), p.1349-1379
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2415854209
source Springer Link
subjects Classical and Quantum Gravitation
Complex Systems
Conjugate points
Geodesy
Manifolds (mathematics)
Mathematical and Computational Physics
Mathematical Physics
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title The Light Ray Transform on Lorentzian Manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Light%20Ray%20Transform%20on%20Lorentzian%20Manifolds&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Lassas,%20Matti&rft.date=2020-07-01&rft.volume=377&rft.issue=2&rft.spage=1349&rft.epage=1379&rft.pages=1349-1379&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-020-03703-6&rft_dat=%3Cproquest_cross%3E2415854209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-7a532f37f04f68dcea56f2ffddde7591e331daa2170c55dc6988c98cb39e87973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415854209&rft_id=info:pmid/&rfr_iscdi=true