Loading…

SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications

Ammonia serves an important role in medical diagnosis and food processing technology. Development of sensors at lower operating temperatures has gathered momentum for the detection and monitoring of ammonia vapor in the recent years. In this work, magnesium-doped zinc oxide thin films were prepared...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2020-07, Vol.31 (13), p.10186-10195
Main Authors: Devi, K. Radhi, Selvan, G., Karunakaran, M., Kasirajan, K., Chandrasekar, L. Bruno, Shkir, Mohd, AlFaify, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-a692007e78ebd80de11c1a845c96aa22e46ff5a65cdabcff0f1f5372b94f3d123
cites cdi_FETCH-LOGICAL-c385t-a692007e78ebd80de11c1a845c96aa22e46ff5a65cdabcff0f1f5372b94f3d123
container_end_page 10195
container_issue 13
container_start_page 10186
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Devi, K. Radhi
Selvan, G.
Karunakaran, M.
Kasirajan, K.
Chandrasekar, L. Bruno
Shkir, Mohd
AlFaify, S.
description Ammonia serves an important role in medical diagnosis and food processing technology. Development of sensors at lower operating temperatures has gathered momentum for the detection and monitoring of ammonia vapor in the recent years. In this work, magnesium-doped zinc oxide thin films were prepared by successive ionic layer adsorption and reaction process and their room temperature ethanol sensing properties were analyzed. The films have been investigated for their structures, morphological, optical, and gas sensing properties. The findings of X-ray diffraction show that the films have polycrystalline nature with a Wurtzite structure. The magnesium doping reduces the size of the crystallites. Scanning electron microscope images show that high doping concentration changes the shape of the grains from spherical to nanoflowers. The optical transmission increases and bandgap also increase from 3.03 to 3.17 eV as the doping concentration of magnesium increases from 0 to 5 wt%. Role of ZnO nanoflowers at room temperature operation coordination with a highly sensitive response and recovery times (13 and 20 s) with the low deposition cost suggests suitability for developing a low-power cost-effective ammonia vapor sensor.
doi_str_mv 10.1007/s10854-020-03564-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2416039288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416039288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a692007e78ebd80de11c1a845c96aa22e46ff5a65cdabcff0f1f5372b94f3d123</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbV5suh8HHYGXAB4ibkEmTscM0qUlH8N_bsYI7V_deOOfcw4fQOYFLAlBcJQJScAwUMDCRcywP0ISIgmEu6eshmkApCswFpcfoJKUNAOScyQm6f1pUs0dsgu5tnT2scR26YXnzy6x_b3zmmm2bMhdipts2-EZnn7obrmR9avw60123bYzum-DTKTpyepvs2e-copeb6-f5Ha6Wt4v5rMKGSdFjnZd06GwLaVe1hNoSYoiWXJgy15pSy3PnhM6FqfXKOAeOOMEKuiq5YzWhbIouxtwuho-dTb3ahF30w0tFOcmBlVTKQUVHlYkhpWid6mLT6vilCKg9NDVCUwM09QNN7U1sNKVB7Nc2_kX_4_oGF1lvKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416039288</pqid></control><display><type>article</type><title>SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications</title><source>Springer Link</source><creator>Devi, K. Radhi ; Selvan, G. ; Karunakaran, M. ; Kasirajan, K. ; Chandrasekar, L. Bruno ; Shkir, Mohd ; AlFaify, S.</creator><creatorcontrib>Devi, K. Radhi ; Selvan, G. ; Karunakaran, M. ; Kasirajan, K. ; Chandrasekar, L. Bruno ; Shkir, Mohd ; AlFaify, S.</creatorcontrib><description>Ammonia serves an important role in medical diagnosis and food processing technology. Development of sensors at lower operating temperatures has gathered momentum for the detection and monitoring of ammonia vapor in the recent years. In this work, magnesium-doped zinc oxide thin films were prepared by successive ionic layer adsorption and reaction process and their room temperature ethanol sensing properties were analyzed. The films have been investigated for their structures, morphological, optical, and gas sensing properties. The findings of X-ray diffraction show that the films have polycrystalline nature with a Wurtzite structure. The magnesium doping reduces the size of the crystallites. Scanning electron microscope images show that high doping concentration changes the shape of the grains from spherical to nanoflowers. The optical transmission increases and bandgap also increase from 3.03 to 3.17 eV as the doping concentration of magnesium increases from 0 to 5 wt%. Role of ZnO nanoflowers at room temperature operation coordination with a highly sensitive response and recovery times (13 and 20 s) with the low deposition cost suggests suitability for developing a low-power cost-effective ammonia vapor sensor.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-03564-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ammonia ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Detection ; Doping ; Ethanol ; Food processing ; Gas sensors ; Magnesium ; Materials Science ; Operating temperature ; Optical and Electronic Materials ; Optical properties ; Room temperature ; Thin films ; Vapors ; Wurtzite ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of materials science. Materials in electronics, 2020-07, Vol.31 (13), p.10186-10195</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a692007e78ebd80de11c1a845c96aa22e46ff5a65cdabcff0f1f5372b94f3d123</citedby><cites>FETCH-LOGICAL-c385t-a692007e78ebd80de11c1a845c96aa22e46ff5a65cdabcff0f1f5372b94f3d123</cites><orcidid>0000-0003-2160-6063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Devi, K. Radhi</creatorcontrib><creatorcontrib>Selvan, G.</creatorcontrib><creatorcontrib>Karunakaran, M.</creatorcontrib><creatorcontrib>Kasirajan, K.</creatorcontrib><creatorcontrib>Chandrasekar, L. Bruno</creatorcontrib><creatorcontrib>Shkir, Mohd</creatorcontrib><creatorcontrib>AlFaify, S.</creatorcontrib><title>SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Ammonia serves an important role in medical diagnosis and food processing technology. Development of sensors at lower operating temperatures has gathered momentum for the detection and monitoring of ammonia vapor in the recent years. In this work, magnesium-doped zinc oxide thin films were prepared by successive ionic layer adsorption and reaction process and their room temperature ethanol sensing properties were analyzed. The films have been investigated for their structures, morphological, optical, and gas sensing properties. The findings of X-ray diffraction show that the films have polycrystalline nature with a Wurtzite structure. The magnesium doping reduces the size of the crystallites. Scanning electron microscope images show that high doping concentration changes the shape of the grains from spherical to nanoflowers. The optical transmission increases and bandgap also increase from 3.03 to 3.17 eV as the doping concentration of magnesium increases from 0 to 5 wt%. Role of ZnO nanoflowers at room temperature operation coordination with a highly sensitive response and recovery times (13 and 20 s) with the low deposition cost suggests suitability for developing a low-power cost-effective ammonia vapor sensor.</description><subject>Ammonia</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Detection</subject><subject>Doping</subject><subject>Ethanol</subject><subject>Food processing</subject><subject>Gas sensors</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Operating temperature</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Room temperature</subject><subject>Thin films</subject><subject>Vapors</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbV5suh8HHYGXAB4ibkEmTscM0qUlH8N_bsYI7V_deOOfcw4fQOYFLAlBcJQJScAwUMDCRcywP0ISIgmEu6eshmkApCswFpcfoJKUNAOScyQm6f1pUs0dsgu5tnT2scR26YXnzy6x_b3zmmm2bMhdipts2-EZnn7obrmR9avw60123bYzum-DTKTpyepvs2e-copeb6-f5Ha6Wt4v5rMKGSdFjnZd06GwLaVe1hNoSYoiWXJgy15pSy3PnhM6FqfXKOAeOOMEKuiq5YzWhbIouxtwuho-dTb3ahF30w0tFOcmBlVTKQUVHlYkhpWid6mLT6vilCKg9NDVCUwM09QNN7U1sNKVB7Nc2_kX_4_oGF1lvKw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Devi, K. Radhi</creator><creator>Selvan, G.</creator><creator>Karunakaran, M.</creator><creator>Kasirajan, K.</creator><creator>Chandrasekar, L. Bruno</creator><creator>Shkir, Mohd</creator><creator>AlFaify, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2160-6063</orcidid></search><sort><creationdate>20200701</creationdate><title>SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications</title><author>Devi, K. Radhi ; Selvan, G. ; Karunakaran, M. ; Kasirajan, K. ; Chandrasekar, L. Bruno ; Shkir, Mohd ; AlFaify, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a692007e78ebd80de11c1a845c96aa22e46ff5a65cdabcff0f1f5372b94f3d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Detection</topic><topic>Doping</topic><topic>Ethanol</topic><topic>Food processing</topic><topic>Gas sensors</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Operating temperature</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Room temperature</topic><topic>Thin films</topic><topic>Vapors</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devi, K. Radhi</creatorcontrib><creatorcontrib>Selvan, G.</creatorcontrib><creatorcontrib>Karunakaran, M.</creatorcontrib><creatorcontrib>Kasirajan, K.</creatorcontrib><creatorcontrib>Chandrasekar, L. Bruno</creatorcontrib><creatorcontrib>Shkir, Mohd</creatorcontrib><creatorcontrib>AlFaify, S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, K. Radhi</au><au>Selvan, G.</au><au>Karunakaran, M.</au><au>Kasirajan, K.</au><au>Chandrasekar, L. Bruno</au><au>Shkir, Mohd</au><au>AlFaify, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>31</volume><issue>13</issue><spage>10186</spage><epage>10195</epage><pages>10186-10195</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Ammonia serves an important role in medical diagnosis and food processing technology. Development of sensors at lower operating temperatures has gathered momentum for the detection and monitoring of ammonia vapor in the recent years. In this work, magnesium-doped zinc oxide thin films were prepared by successive ionic layer adsorption and reaction process and their room temperature ethanol sensing properties were analyzed. The films have been investigated for their structures, morphological, optical, and gas sensing properties. The findings of X-ray diffraction show that the films have polycrystalline nature with a Wurtzite structure. The magnesium doping reduces the size of the crystallites. Scanning electron microscope images show that high doping concentration changes the shape of the grains from spherical to nanoflowers. The optical transmission increases and bandgap also increase from 3.03 to 3.17 eV as the doping concentration of magnesium increases from 0 to 5 wt%. Role of ZnO nanoflowers at room temperature operation coordination with a highly sensitive response and recovery times (13 and 20 s) with the low deposition cost suggests suitability for developing a low-power cost-effective ammonia vapor sensor.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-03564-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2160-6063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-07, Vol.31 (13), p.10186-10195
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2416039288
source Springer Link
subjects Ammonia
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Detection
Doping
Ethanol
Food processing
Gas sensors
Magnesium
Materials Science
Operating temperature
Optical and Electronic Materials
Optical properties
Room temperature
Thin films
Vapors
Wurtzite
Zinc oxide
Zinc oxides
title SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SILAR-coated%20Mg-doped%20ZnO%20thin%20films%20for%20ammonia%20vapor%20sensing%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Devi,%20K.%20Radhi&rft.date=2020-07-01&rft.volume=31&rft.issue=13&rft.spage=10186&rft.epage=10195&rft.pages=10186-10195&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-03564-8&rft_dat=%3Cproquest_cross%3E2416039288%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-a692007e78ebd80de11c1a845c96aa22e46ff5a65cdabcff0f1f5372b94f3d123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416039288&rft_id=info:pmid/&rfr_iscdi=true