Loading…

Spatially optimizing vegetation indices integrated with sparse partial least squares regression to detect and map the effects of Gonipterus scutellatus on the chlorophyll content of eucalyptus plantations

Gonipterus scutellatus is a beetle causing severe defoliation to South Africa's eucalyptus plantations. This defoliation induced by the beetle inhibits the eucalypts ability to photosynthesize, by affecting its chlorophyll content. Therefore, this study integrates spatially optimized and the si...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing 2020-08, Vol.41 (16), p.6444-6459
Main Authors: Lottering, Romano, Mutanga, Onisimo, Peerbhay, Kabir, Lottering, Shenelle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c201t-375f4cdb119b290bda978139077f3b24b0618113d0373be41595860668cb87903
container_end_page 6459
container_issue 16
container_start_page 6444
container_title International journal of remote sensing
container_volume 41
creator Lottering, Romano
Mutanga, Onisimo
Peerbhay, Kabir
Lottering, Shenelle
description Gonipterus scutellatus is a beetle causing severe defoliation to South Africa's eucalyptus plantations. This defoliation induced by the beetle inhibits the eucalypts ability to photosynthesize, by affecting its chlorophyll content. Therefore, this study integrates spatially optimized and the single 0.5 m resolution vegetation indices with sparse partial least squares regression (SPLS-R) and partial least squares regression (PLS-R) to detect and map leaf chlorophyll content of defoliated eucalyptus plantations. The optimized vegetation indices were spatially resampled to resolutions that best paralleled varying levels of G. scutellatus defoliation. From the results, the 0.5 m resolution SPLS-R model (R 2  = 0.76; RMSE of 1.50 (2.88% of the mean measured chlorophyll)) outcompeted the 0.5 m resolution PLS-R (R 2  = 0.73; RMSE of 1.54 (2.95% of the mean measured chlorophyll)) model. Furthermore, the spatially optimized SPLS-R (R 2  = 0.81; RMSE of 1.44 (2.76% of the mean measured chlorophyll) model was more superior in detecting and mapping chlorophyll content of defoliated eucalyptus plantations when compared to the 0.5 m resolution SPLS-R model. The most significant variables selected by the optimized SPLS-R model were DMI, ARI, NDRE, GNDVI, and NDVI. In essence, this study has illustrated the significance of the spatial resolution in effectively detecting and mapping chlorophyll content of defoliated eucalyptus plantations.
doi_str_mv 10.1080/01431161.2020.1739350
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2417192515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417192515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-375f4cdb119b290bda978139077f3b24b0618113d0373be41595860668cb87903</originalsourceid><addsrcrecordid>eNp9kdGO1SAQhonRxOPqI5iQeN2VKW0pd5qNriabeKFeE0qn57DhAAvUTX1GH0qas956w5DJ9w0TfkLeArsGNrL3DDoOMMB1y9raElzynj0jB-DD0PSSwXNy2Jlmh16SVznfM8YG0YsD-fM96mK1cxsNsdiz_W39kf7CI5baD55aP1uDudaCx6QLzvTRlhPNUaeMtJ67Th3qXGh-WHWqcKoo5rz7JdAZC5pCtZ_pWUdaTkhxWWor07DQ2-BtLJjWTLNZCzqnS73vagXNyYUU4mlzjppQd_Bll3A12m1xB6PT_rJrfk1eLNplfPNUr8jPz59-3Hxp7r7dfr35eNeYlkFpuOiXzswTgJxayaZZSzECl0yIhU9tN7EBRgA-My74hB30sh8HNgyjmUYhGb8i7y5zYwoPK-ai7sOafH1StR0IkG0PfaX6C2VSyDnhomKyZ502BUztwal_wak9OPUUXPU-XDzrl5DO-jEkN6uit_oTS9Le2Kz4_0f8BUPRpMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417192515</pqid></control><display><type>article</type><title>Spatially optimizing vegetation indices integrated with sparse partial least squares regression to detect and map the effects of Gonipterus scutellatus on the chlorophyll content of eucalyptus plantations</title><source>Taylor and Francis Science and Technology Collection</source><creator>Lottering, Romano ; Mutanga, Onisimo ; Peerbhay, Kabir ; Lottering, Shenelle</creator><creatorcontrib>Lottering, Romano ; Mutanga, Onisimo ; Peerbhay, Kabir ; Lottering, Shenelle</creatorcontrib><description>Gonipterus scutellatus is a beetle causing severe defoliation to South Africa's eucalyptus plantations. This defoliation induced by the beetle inhibits the eucalypts ability to photosynthesize, by affecting its chlorophyll content. Therefore, this study integrates spatially optimized and the single 0.5 m resolution vegetation indices with sparse partial least squares regression (SPLS-R) and partial least squares regression (PLS-R) to detect and map leaf chlorophyll content of defoliated eucalyptus plantations. The optimized vegetation indices were spatially resampled to resolutions that best paralleled varying levels of G. scutellatus defoliation. From the results, the 0.5 m resolution SPLS-R model (R 2  = 0.76; RMSE of 1.50 (2.88% of the mean measured chlorophyll)) outcompeted the 0.5 m resolution PLS-R (R 2  = 0.73; RMSE of 1.54 (2.95% of the mean measured chlorophyll)) model. Furthermore, the spatially optimized SPLS-R (R 2  = 0.81; RMSE of 1.44 (2.76% of the mean measured chlorophyll) model was more superior in detecting and mapping chlorophyll content of defoliated eucalyptus plantations when compared to the 0.5 m resolution SPLS-R model. The most significant variables selected by the optimized SPLS-R model were DMI, ARI, NDRE, GNDVI, and NDVI. In essence, this study has illustrated the significance of the spatial resolution in effectively detecting and mapping chlorophyll content of defoliated eucalyptus plantations.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431161.2020.1739350</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Chlorophyll ; Chlorophyll content ; Chlorophylls ; Defoliation ; Eucalyptus ; Least squares method ; Mapping ; Plantations ; Regression ; Resolution ; Spatial resolution ; Vegetation</subject><ispartof>International journal of remote sensing, 2020-08, Vol.41 (16), p.6444-6459</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c201t-375f4cdb119b290bda978139077f3b24b0618113d0373be41595860668cb87903</cites><orcidid>0000-0003-2381-4915 ; 0000-0001-7842-6130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lottering, Romano</creatorcontrib><creatorcontrib>Mutanga, Onisimo</creatorcontrib><creatorcontrib>Peerbhay, Kabir</creatorcontrib><creatorcontrib>Lottering, Shenelle</creatorcontrib><title>Spatially optimizing vegetation indices integrated with sparse partial least squares regression to detect and map the effects of Gonipterus scutellatus on the chlorophyll content of eucalyptus plantations</title><title>International journal of remote sensing</title><description>Gonipterus scutellatus is a beetle causing severe defoliation to South Africa's eucalyptus plantations. This defoliation induced by the beetle inhibits the eucalypts ability to photosynthesize, by affecting its chlorophyll content. Therefore, this study integrates spatially optimized and the single 0.5 m resolution vegetation indices with sparse partial least squares regression (SPLS-R) and partial least squares regression (PLS-R) to detect and map leaf chlorophyll content of defoliated eucalyptus plantations. The optimized vegetation indices were spatially resampled to resolutions that best paralleled varying levels of G. scutellatus defoliation. From the results, the 0.5 m resolution SPLS-R model (R 2  = 0.76; RMSE of 1.50 (2.88% of the mean measured chlorophyll)) outcompeted the 0.5 m resolution PLS-R (R 2  = 0.73; RMSE of 1.54 (2.95% of the mean measured chlorophyll)) model. Furthermore, the spatially optimized SPLS-R (R 2  = 0.81; RMSE of 1.44 (2.76% of the mean measured chlorophyll) model was more superior in detecting and mapping chlorophyll content of defoliated eucalyptus plantations when compared to the 0.5 m resolution SPLS-R model. The most significant variables selected by the optimized SPLS-R model were DMI, ARI, NDRE, GNDVI, and NDVI. In essence, this study has illustrated the significance of the spatial resolution in effectively detecting and mapping chlorophyll content of defoliated eucalyptus plantations.</description><subject>Chlorophyll</subject><subject>Chlorophyll content</subject><subject>Chlorophylls</subject><subject>Defoliation</subject><subject>Eucalyptus</subject><subject>Least squares method</subject><subject>Mapping</subject><subject>Plantations</subject><subject>Regression</subject><subject>Resolution</subject><subject>Spatial resolution</subject><subject>Vegetation</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kdGO1SAQhonRxOPqI5iQeN2VKW0pd5qNriabeKFeE0qn57DhAAvUTX1GH0qas956w5DJ9w0TfkLeArsGNrL3DDoOMMB1y9raElzynj0jB-DD0PSSwXNy2Jlmh16SVznfM8YG0YsD-fM96mK1cxsNsdiz_W39kf7CI5baD55aP1uDudaCx6QLzvTRlhPNUaeMtJ67Th3qXGh-WHWqcKoo5rz7JdAZC5pCtZ_pWUdaTkhxWWor07DQ2-BtLJjWTLNZCzqnS73vagXNyYUU4mlzjppQd_Bll3A12m1xB6PT_rJrfk1eLNplfPNUr8jPz59-3Hxp7r7dfr35eNeYlkFpuOiXzswTgJxayaZZSzECl0yIhU9tN7EBRgA-My74hB30sh8HNgyjmUYhGb8i7y5zYwoPK-ai7sOafH1StR0IkG0PfaX6C2VSyDnhomKyZ502BUztwal_wak9OPUUXPU-XDzrl5DO-jEkN6uit_oTS9Le2Kz4_0f8BUPRpMw</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Lottering, Romano</creator><creator>Mutanga, Onisimo</creator><creator>Peerbhay, Kabir</creator><creator>Lottering, Shenelle</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2381-4915</orcidid><orcidid>https://orcid.org/0000-0001-7842-6130</orcidid></search><sort><creationdate>20200817</creationdate><title>Spatially optimizing vegetation indices integrated with sparse partial least squares regression to detect and map the effects of Gonipterus scutellatus on the chlorophyll content of eucalyptus plantations</title><author>Lottering, Romano ; Mutanga, Onisimo ; Peerbhay, Kabir ; Lottering, Shenelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-375f4cdb119b290bda978139077f3b24b0618113d0373be41595860668cb87903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chlorophyll</topic><topic>Chlorophyll content</topic><topic>Chlorophylls</topic><topic>Defoliation</topic><topic>Eucalyptus</topic><topic>Least squares method</topic><topic>Mapping</topic><topic>Plantations</topic><topic>Regression</topic><topic>Resolution</topic><topic>Spatial resolution</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lottering, Romano</creatorcontrib><creatorcontrib>Mutanga, Onisimo</creatorcontrib><creatorcontrib>Peerbhay, Kabir</creatorcontrib><creatorcontrib>Lottering, Shenelle</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lottering, Romano</au><au>Mutanga, Onisimo</au><au>Peerbhay, Kabir</au><au>Lottering, Shenelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially optimizing vegetation indices integrated with sparse partial least squares regression to detect and map the effects of Gonipterus scutellatus on the chlorophyll content of eucalyptus plantations</atitle><jtitle>International journal of remote sensing</jtitle><date>2020-08-17</date><risdate>2020</risdate><volume>41</volume><issue>16</issue><spage>6444</spage><epage>6459</epage><pages>6444-6459</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><abstract>Gonipterus scutellatus is a beetle causing severe defoliation to South Africa's eucalyptus plantations. This defoliation induced by the beetle inhibits the eucalypts ability to photosynthesize, by affecting its chlorophyll content. Therefore, this study integrates spatially optimized and the single 0.5 m resolution vegetation indices with sparse partial least squares regression (SPLS-R) and partial least squares regression (PLS-R) to detect and map leaf chlorophyll content of defoliated eucalyptus plantations. The optimized vegetation indices were spatially resampled to resolutions that best paralleled varying levels of G. scutellatus defoliation. From the results, the 0.5 m resolution SPLS-R model (R 2  = 0.76; RMSE of 1.50 (2.88% of the mean measured chlorophyll)) outcompeted the 0.5 m resolution PLS-R (R 2  = 0.73; RMSE of 1.54 (2.95% of the mean measured chlorophyll)) model. Furthermore, the spatially optimized SPLS-R (R 2  = 0.81; RMSE of 1.44 (2.76% of the mean measured chlorophyll) model was more superior in detecting and mapping chlorophyll content of defoliated eucalyptus plantations when compared to the 0.5 m resolution SPLS-R model. The most significant variables selected by the optimized SPLS-R model were DMI, ARI, NDRE, GNDVI, and NDVI. In essence, this study has illustrated the significance of the spatial resolution in effectively detecting and mapping chlorophyll content of defoliated eucalyptus plantations.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01431161.2020.1739350</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2381-4915</orcidid><orcidid>https://orcid.org/0000-0001-7842-6130</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-1161
ispartof International journal of remote sensing, 2020-08, Vol.41 (16), p.6444-6459
issn 0143-1161
1366-5901
language eng
recordid cdi_proquest_journals_2417192515
source Taylor and Francis Science and Technology Collection
subjects Chlorophyll
Chlorophyll content
Chlorophylls
Defoliation
Eucalyptus
Least squares method
Mapping
Plantations
Regression
Resolution
Spatial resolution
Vegetation
title Spatially optimizing vegetation indices integrated with sparse partial least squares regression to detect and map the effects of Gonipterus scutellatus on the chlorophyll content of eucalyptus plantations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20optimizing%20vegetation%20indices%20integrated%20with%20sparse%20partial%20least%20squares%20regression%20to%20detect%20and%20map%20the%20effects%20of%20Gonipterus%20scutellatus%20on%20the%20chlorophyll%20content%20of%20eucalyptus%20plantations&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Lottering,%20Romano&rft.date=2020-08-17&rft.volume=41&rft.issue=16&rft.spage=6444&rft.epage=6459&rft.pages=6444-6459&rft.issn=0143-1161&rft.eissn=1366-5901&rft_id=info:doi/10.1080/01431161.2020.1739350&rft_dat=%3Cproquest_cross%3E2417192515%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c201t-375f4cdb119b290bda978139077f3b24b0618113d0373be41595860668cb87903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417192515&rft_id=info:pmid/&rfr_iscdi=true