Loading…

Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security

Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation....

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment cell and environment, 2020-07, Vol.43 (7), p.1595-1608
Main Authors: Xu, Jiemeng, Henry, Amelia, Sreenivasulu, Nese
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation. Hence improving rice crop tolerance to heat stress in terms of sustaining yield stability under high day temperature (HDT), high night temperature (HNT), or combined high day and night temperature (HDNT) will bolster future food security. In this review article, we highlight the phenological alterations caused by heat and the underlying molecular‐physiological and genetic mechanisms operating under different types of heat conditions (HDT, HNT, and HDNT) to understand heat tolerance. Based on our synthesis of HDT, HNT, and HDNT effects on rice yield components, we outline future breeding strategies to contribute to sustained food security under climate change. In this review article we highlighted the phenological implications of heat stress and summarized the molecular physiological implications affecting HDT, HNT, and HDNT tolerance with a holistic approach of physiology, genomics, and systems‐genetics approaches. We outlined future breeding strategies to address sustained food security under climate change.
ISSN:0140-7791
1365-3040
DOI:10.1111/pce.13748