Loading…

Broadband absorption and photothermal conversion in titanium diboride

Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2...

Full description

Saved in:
Bibliographic Details
Main Authors: John, Saju K., Anappara, Aji A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2244
creator John, Saju K.
Anappara, Aji A.
description Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2 as a good light to heat conversion material in the solid-state. The optical response of the material in its powder form was obtained by UV-Diffuse Reflectance Spectroscopy (UV-DRS) and fluorescence spectroscopy. The heat flow from the samples upon irradiation with a broadband UV-vis lightsource (λ~250−450 nm) was measured by using a photo-differential scanning calorimeter (photo DSC). The exothermic heat flow, upon irradiation registered bythe powder sample, was found to be ∼19 W/g at an irradiance of 693 mW/cm2. The magnitude of heat flow registered by TiB2 powder was found to be several times higher as compared to that reported for many bulk materials such as TiO2, ZnO, SnO2 and ZrNCl. The discovery of light-to-heat conversion efficacy of the material is a new perspective in the science of TiB2.
doi_str_mv 10.1063/5.0009309
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2417691952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417691952</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-faccfe441c53a2dd7c51cb1626b0fb215662c27c3f79664dde066d229f697a923</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCN2FrPjaT5qilfkDBi4K3kM0HTWk3a5It-O_t0oI3T8PMPDPvzIvQLcEzgoE98BnGWDIsz9CEcE5qAQTO0eRQbGrasK9LdJXzBmMqhZhP0PIpRW1b3dlKtzmmvoTYVWPar2OJZe3STm8rE7u9S3nsha4qoeguDLvKhjamYN01uvB6m93NKU7R5_PyY_Far95f3haPq7onMC-118Z41zTEcKaptcJwYloCFFrsW0o4ADVUGOaFBGisdRjAUio9SKElZVN0d9zbp_g9uFzUJg6pO0gq2hABkkg-UvdHKpvDoeNDqk9hp9OP2sekuDpZpHrr_4MJVqOnfwPsF_82aPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2417691952</pqid></control><display><type>conference_proceeding</type><title>Broadband absorption and photothermal conversion in titanium diboride</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>John, Saju K. ; Anappara, Aji A.</creator><contributor>Bajenthri, Rajashekar ; Sanjeev, Ganesh ; Boukherroub, Rabah ; Hundekal, Devendrappa ; Adhikari, Rameshwar ; Sangaraju, Shanmugam</contributor><creatorcontrib>John, Saju K. ; Anappara, Aji A. ; Bajenthri, Rajashekar ; Sanjeev, Ganesh ; Boukherroub, Rabah ; Hundekal, Devendrappa ; Adhikari, Rameshwar ; Sangaraju, Shanmugam</creatorcontrib><description>Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2 as a good light to heat conversion material in the solid-state. The optical response of the material in its powder form was obtained by UV-Diffuse Reflectance Spectroscopy (UV-DRS) and fluorescence spectroscopy. The heat flow from the samples upon irradiation with a broadband UV-vis lightsource (λ~250−450 nm) was measured by using a photo-differential scanning calorimeter (photo DSC). The exothermic heat flow, upon irradiation registered bythe powder sample, was found to be ∼19 W/g at an irradiance of 693 mW/cm2. The magnitude of heat flow registered by TiB2 powder was found to be several times higher as compared to that reported for many bulk materials such as TiO2, ZnO, SnO2 and ZrNCl. The discovery of light-to-heat conversion efficacy of the material is a new perspective in the science of TiB2.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0009309</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boron ; Broadband ; Differential scanning calorimetry ; Diffuse reflectance spectroscopy ; Fluorescence ; Heat transfer ; Heat transmission ; Irradiance ; Irradiation ; Melting points ; Photothermal conversion ; Spectrum analysis ; Tin dioxide ; Titanium ; Titanium diboride ; Titanium dioxide ; Zinc oxide</subject><ispartof>AIP conference proceedings, 2020, Vol.2244 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids></links><search><contributor>Bajenthri, Rajashekar</contributor><contributor>Sanjeev, Ganesh</contributor><contributor>Boukherroub, Rabah</contributor><contributor>Hundekal, Devendrappa</contributor><contributor>Adhikari, Rameshwar</contributor><contributor>Sangaraju, Shanmugam</contributor><creatorcontrib>John, Saju K.</creatorcontrib><creatorcontrib>Anappara, Aji A.</creatorcontrib><title>Broadband absorption and photothermal conversion in titanium diboride</title><title>AIP conference proceedings</title><description>Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2 as a good light to heat conversion material in the solid-state. The optical response of the material in its powder form was obtained by UV-Diffuse Reflectance Spectroscopy (UV-DRS) and fluorescence spectroscopy. The heat flow from the samples upon irradiation with a broadband UV-vis lightsource (λ~250−450 nm) was measured by using a photo-differential scanning calorimeter (photo DSC). The exothermic heat flow, upon irradiation registered bythe powder sample, was found to be ∼19 W/g at an irradiance of 693 mW/cm2. The magnitude of heat flow registered by TiB2 powder was found to be several times higher as compared to that reported for many bulk materials such as TiO2, ZnO, SnO2 and ZrNCl. The discovery of light-to-heat conversion efficacy of the material is a new perspective in the science of TiB2.</description><subject>Boron</subject><subject>Broadband</subject><subject>Differential scanning calorimetry</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Fluorescence</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Irradiance</subject><subject>Irradiation</subject><subject>Melting points</subject><subject>Photothermal conversion</subject><subject>Spectrum analysis</subject><subject>Tin dioxide</subject><subject>Titanium</subject><subject>Titanium diboride</subject><subject>Titanium dioxide</subject><subject>Zinc oxide</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCN2FrPjaT5qilfkDBi4K3kM0HTWk3a5It-O_t0oI3T8PMPDPvzIvQLcEzgoE98BnGWDIsz9CEcE5qAQTO0eRQbGrasK9LdJXzBmMqhZhP0PIpRW1b3dlKtzmmvoTYVWPar2OJZe3STm8rE7u9S3nsha4qoeguDLvKhjamYN01uvB6m93NKU7R5_PyY_Far95f3haPq7onMC-118Z41zTEcKaptcJwYloCFFrsW0o4ADVUGOaFBGisdRjAUio9SKElZVN0d9zbp_g9uFzUJg6pO0gq2hABkkg-UvdHKpvDoeNDqk9hp9OP2sekuDpZpHrr_4MJVqOnfwPsF_82aPI</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>John, Saju K.</creator><creator>Anappara, Aji A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200626</creationdate><title>Broadband absorption and photothermal conversion in titanium diboride</title><author>John, Saju K. ; Anappara, Aji A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-faccfe441c53a2dd7c51cb1626b0fb215662c27c3f79664dde066d229f697a923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boron</topic><topic>Broadband</topic><topic>Differential scanning calorimetry</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Fluorescence</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Irradiance</topic><topic>Irradiation</topic><topic>Melting points</topic><topic>Photothermal conversion</topic><topic>Spectrum analysis</topic><topic>Tin dioxide</topic><topic>Titanium</topic><topic>Titanium diboride</topic><topic>Titanium dioxide</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, Saju K.</creatorcontrib><creatorcontrib>Anappara, Aji A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, Saju K.</au><au>Anappara, Aji A.</au><au>Bajenthri, Rajashekar</au><au>Sanjeev, Ganesh</au><au>Boukherroub, Rabah</au><au>Hundekal, Devendrappa</au><au>Adhikari, Rameshwar</au><au>Sangaraju, Shanmugam</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Broadband absorption and photothermal conversion in titanium diboride</atitle><btitle>AIP conference proceedings</btitle><date>2020-06-26</date><risdate>2020</risdate><volume>2244</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2 as a good light to heat conversion material in the solid-state. The optical response of the material in its powder form was obtained by UV-Diffuse Reflectance Spectroscopy (UV-DRS) and fluorescence spectroscopy. The heat flow from the samples upon irradiation with a broadband UV-vis lightsource (λ~250−450 nm) was measured by using a photo-differential scanning calorimeter (photo DSC). The exothermic heat flow, upon irradiation registered bythe powder sample, was found to be ∼19 W/g at an irradiance of 693 mW/cm2. The magnitude of heat flow registered by TiB2 powder was found to be several times higher as compared to that reported for many bulk materials such as TiO2, ZnO, SnO2 and ZrNCl. The discovery of light-to-heat conversion efficacy of the material is a new perspective in the science of TiB2.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0009309</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2244 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2417691952
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Boron
Broadband
Differential scanning calorimetry
Diffuse reflectance spectroscopy
Fluorescence
Heat transfer
Heat transmission
Irradiance
Irradiation
Melting points
Photothermal conversion
Spectrum analysis
Tin dioxide
Titanium
Titanium diboride
Titanium dioxide
Zinc oxide
title Broadband absorption and photothermal conversion in titanium diboride
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Broadband%20absorption%20and%20photothermal%20conversion%20in%20titanium%20diboride&rft.btitle=AIP%20conference%20proceedings&rft.au=John,%20Saju%20K.&rft.date=2020-06-26&rft.volume=2244&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0009309&rft_dat=%3Cproquest_scita%3E2417691952%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-faccfe441c53a2dd7c51cb1626b0fb215662c27c3f79664dde066d229f697a923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417691952&rft_id=info:pmid/&rfr_iscdi=true