Loading…
Broadband absorption and photothermal conversion in titanium diboride
Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2244 |
creator | John, Saju K. Anappara, Aji A. |
description | Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2 as a good light to heat conversion material in the solid-state. The optical response of the material in its powder form was obtained by UV-Diffuse Reflectance Spectroscopy (UV-DRS) and fluorescence spectroscopy. The heat flow from the samples upon irradiation with a broadband UV-vis lightsource (λ~250−450 nm) was measured by using a photo-differential scanning calorimeter (photo DSC). The exothermic heat flow, upon irradiation registered bythe powder sample, was found to be ∼19 W/g at an irradiance of 693 mW/cm2. The magnitude of heat flow registered by TiB2 powder was found to be several times higher as compared to that reported for many bulk materials such as TiO2, ZnO, SnO2 and ZrNCl. The discovery of light-to-heat conversion efficacy of the material is a new perspective in the science of TiB2. |
doi_str_mv | 10.1063/5.0009309 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2417691952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417691952</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-faccfe441c53a2dd7c51cb1626b0fb215662c27c3f79664dde066d229f697a923</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCN2FrPjaT5qilfkDBi4K3kM0HTWk3a5It-O_t0oI3T8PMPDPvzIvQLcEzgoE98BnGWDIsz9CEcE5qAQTO0eRQbGrasK9LdJXzBmMqhZhP0PIpRW1b3dlKtzmmvoTYVWPar2OJZe3STm8rE7u9S3nsha4qoeguDLvKhjamYN01uvB6m93NKU7R5_PyY_Far95f3haPq7onMC-118Z41zTEcKaptcJwYloCFFrsW0o4ADVUGOaFBGisdRjAUio9SKElZVN0d9zbp_g9uFzUJg6pO0gq2hABkkg-UvdHKpvDoeNDqk9hp9OP2sekuDpZpHrr_4MJVqOnfwPsF_82aPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2417691952</pqid></control><display><type>conference_proceeding</type><title>Broadband absorption and photothermal conversion in titanium diboride</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>John, Saju K. ; Anappara, Aji A.</creator><contributor>Bajenthri, Rajashekar ; Sanjeev, Ganesh ; Boukherroub, Rabah ; Hundekal, Devendrappa ; Adhikari, Rameshwar ; Sangaraju, Shanmugam</contributor><creatorcontrib>John, Saju K. ; Anappara, Aji A. ; Bajenthri, Rajashekar ; Sanjeev, Ganesh ; Boukherroub, Rabah ; Hundekal, Devendrappa ; Adhikari, Rameshwar ; Sangaraju, Shanmugam</creatorcontrib><description>Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2 as a good light to heat conversion material in the solid-state. The optical response of the material in its powder form was obtained by UV-Diffuse Reflectance Spectroscopy (UV-DRS) and fluorescence spectroscopy. The heat flow from the samples upon irradiation with a broadband UV-vis lightsource (λ~250−450 nm) was measured by using a photo-differential scanning calorimeter (photo DSC). The exothermic heat flow, upon irradiation registered bythe powder sample, was found to be ∼19 W/g at an irradiance of 693 mW/cm2. The magnitude of heat flow registered by TiB2 powder was found to be several times higher as compared to that reported for many bulk materials such as TiO2, ZnO, SnO2 and ZrNCl. The discovery of light-to-heat conversion efficacy of the material is a new perspective in the science of TiB2.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0009309</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boron ; Broadband ; Differential scanning calorimetry ; Diffuse reflectance spectroscopy ; Fluorescence ; Heat transfer ; Heat transmission ; Irradiance ; Irradiation ; Melting points ; Photothermal conversion ; Spectrum analysis ; Tin dioxide ; Titanium ; Titanium diboride ; Titanium dioxide ; Zinc oxide</subject><ispartof>AIP conference proceedings, 2020, Vol.2244 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids></links><search><contributor>Bajenthri, Rajashekar</contributor><contributor>Sanjeev, Ganesh</contributor><contributor>Boukherroub, Rabah</contributor><contributor>Hundekal, Devendrappa</contributor><contributor>Adhikari, Rameshwar</contributor><contributor>Sangaraju, Shanmugam</contributor><creatorcontrib>John, Saju K.</creatorcontrib><creatorcontrib>Anappara, Aji A.</creatorcontrib><title>Broadband absorption and photothermal conversion in titanium diboride</title><title>AIP conference proceedings</title><description>Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2 as a good light to heat conversion material in the solid-state. The optical response of the material in its powder form was obtained by UV-Diffuse Reflectance Spectroscopy (UV-DRS) and fluorescence spectroscopy. The heat flow from the samples upon irradiation with a broadband UV-vis lightsource (λ~250−450 nm) was measured by using a photo-differential scanning calorimeter (photo DSC). The exothermic heat flow, upon irradiation registered bythe powder sample, was found to be ∼19 W/g at an irradiance of 693 mW/cm2. The magnitude of heat flow registered by TiB2 powder was found to be several times higher as compared to that reported for many bulk materials such as TiO2, ZnO, SnO2 and ZrNCl. The discovery of light-to-heat conversion efficacy of the material is a new perspective in the science of TiB2.</description><subject>Boron</subject><subject>Broadband</subject><subject>Differential scanning calorimetry</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Fluorescence</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Irradiance</subject><subject>Irradiation</subject><subject>Melting points</subject><subject>Photothermal conversion</subject><subject>Spectrum analysis</subject><subject>Tin dioxide</subject><subject>Titanium</subject><subject>Titanium diboride</subject><subject>Titanium dioxide</subject><subject>Zinc oxide</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCN2FrPjaT5qilfkDBi4K3kM0HTWk3a5It-O_t0oI3T8PMPDPvzIvQLcEzgoE98BnGWDIsz9CEcE5qAQTO0eRQbGrasK9LdJXzBmMqhZhP0PIpRW1b3dlKtzmmvoTYVWPar2OJZe3STm8rE7u9S3nsha4qoeguDLvKhjamYN01uvB6m93NKU7R5_PyY_Far95f3haPq7onMC-118Z41zTEcKaptcJwYloCFFrsW0o4ADVUGOaFBGisdRjAUio9SKElZVN0d9zbp_g9uFzUJg6pO0gq2hABkkg-UvdHKpvDoeNDqk9hp9OP2sekuDpZpHrr_4MJVqOnfwPsF_82aPI</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>John, Saju K.</creator><creator>Anappara, Aji A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200626</creationdate><title>Broadband absorption and photothermal conversion in titanium diboride</title><author>John, Saju K. ; Anappara, Aji A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-faccfe441c53a2dd7c51cb1626b0fb215662c27c3f79664dde066d229f697a923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boron</topic><topic>Broadband</topic><topic>Differential scanning calorimetry</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Fluorescence</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Irradiance</topic><topic>Irradiation</topic><topic>Melting points</topic><topic>Photothermal conversion</topic><topic>Spectrum analysis</topic><topic>Tin dioxide</topic><topic>Titanium</topic><topic>Titanium diboride</topic><topic>Titanium dioxide</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, Saju K.</creatorcontrib><creatorcontrib>Anappara, Aji A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, Saju K.</au><au>Anappara, Aji A.</au><au>Bajenthri, Rajashekar</au><au>Sanjeev, Ganesh</au><au>Boukherroub, Rabah</au><au>Hundekal, Devendrappa</au><au>Adhikari, Rameshwar</au><au>Sangaraju, Shanmugam</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Broadband absorption and photothermal conversion in titanium diboride</atitle><btitle>AIP conference proceedings</btitle><date>2020-06-26</date><risdate>2020</risdate><volume>2244</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Titanium diboride (TiB2) is a well-known ceramic material with high mechanical strength, durability, chemical inertness and high melting point. It has a layered structure comprising of graphenic boron layers alternated by hexagonally close packed titanium layers. In this work, we identify bulk TiB2 as a good light to heat conversion material in the solid-state. The optical response of the material in its powder form was obtained by UV-Diffuse Reflectance Spectroscopy (UV-DRS) and fluorescence spectroscopy. The heat flow from the samples upon irradiation with a broadband UV-vis lightsource (λ~250−450 nm) was measured by using a photo-differential scanning calorimeter (photo DSC). The exothermic heat flow, upon irradiation registered bythe powder sample, was found to be ∼19 W/g at an irradiance of 693 mW/cm2. The magnitude of heat flow registered by TiB2 powder was found to be several times higher as compared to that reported for many bulk materials such as TiO2, ZnO, SnO2 and ZrNCl. The discovery of light-to-heat conversion efficacy of the material is a new perspective in the science of TiB2.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0009309</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2020, Vol.2244 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2417691952 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Boron Broadband Differential scanning calorimetry Diffuse reflectance spectroscopy Fluorescence Heat transfer Heat transmission Irradiance Irradiation Melting points Photothermal conversion Spectrum analysis Tin dioxide Titanium Titanium diboride Titanium dioxide Zinc oxide |
title | Broadband absorption and photothermal conversion in titanium diboride |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Broadband%20absorption%20and%20photothermal%20conversion%20in%20titanium%20diboride&rft.btitle=AIP%20conference%20proceedings&rft.au=John,%20Saju%20K.&rft.date=2020-06-26&rft.volume=2244&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0009309&rft_dat=%3Cproquest_scita%3E2417691952%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-faccfe441c53a2dd7c51cb1626b0fb215662c27c3f79664dde066d229f697a923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417691952&rft_id=info:pmid/&rfr_iscdi=true |