Loading…
Quantifying spatiotemporal occupancy dynamics and multi-year core-use areas at a species range boundary
Aim Many species face large‐scale range contractions and predicted distributional shifts in response to climate change, shifting forest characteristics and anthropogenic disturbances. Canada lynx (Lynx canadensis) are listed as threatened under the U.S. Endangered Species Act and were recently recom...
Saved in:
Published in: | Diversity & distributions 2020-07, Vol.26 (7), p.795-805 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3546-f831611124a97ccc94c69d4301573d0c8100dfd3fd452eda76cc746383e858263 |
---|---|
cites | cdi_FETCH-LOGICAL-c3546-f831611124a97ccc94c69d4301573d0c8100dfd3fd452eda76cc746383e858263 |
container_end_page | 805 |
container_issue | 7 |
container_start_page | 795 |
container_title | Diversity & distributions |
container_volume | 26 |
creator | Hostetter, Nathan J. Ryan, Daniel Grosshuesch, David Catton, Timothy Malick-Wahls, Sarah Smith, Tamara A. Gardner, Beth |
description | Aim
Many species face large‐scale range contractions and predicted distributional shifts in response to climate change, shifting forest characteristics and anthropogenic disturbances. Canada lynx (Lynx canadensis) are listed as threatened under the U.S. Endangered Species Act and were recently recommended for delisting. Predicted climate‐driven losses in habitat quality and quantity may negatively affect the north‐eastern Minnesota lynx population, one of the six remaining resident populations in the contiguous United States. We develop a large‐scale monitoring protocol and dynamic occupancy modelling framework to identify multi‐year core‐use areas and track spatiotemporal occurrence at the southern periphery of the species range.
Location
North‐eastern Minnesota lynx geographic unit, Superior National Forest and designated critical habitat, Minnesota, USA.
Methods
Spatially and temporally replicated snow track surveys were used to collect lynx detection/non‐detection data across five winters (2014–15 to 2018–19) covering >17,000 km within the 22,100 km2 study area. We used a dynamic occupancy model to evaluate lynx occupancy, persistence, colonization and habitat covariates affecting these processes.
Results
Lynx occupancy probabilities displayed high spatial and temporal variability, with grid cell‐specific probabilities ranging from 0.0 in periphery regions to consistently near 1.0 in multi‐year core‐use areas, indicating low turnover rates in those areas. Lynx colonization and persistence increased in areas with more evergreen forest and greater average snowfall, while forest characteristics (3–5 and 10–30 m vegetation density) had mixed relationships with occupancy dynamics. We identified 55 grid cells classified as multi‐year core‐use areas across relatively contiguous regions of high average snowfall and per cent conifer forest.
Main conclusions
Our study demonstrates a landscape‐scale multi‐year monitoring programme assessing the effects of habitat characteristics and anthropogenic factors on species distributional changes and landscape‐level occupancy dynamics. Our framework incorporating landscape‐scale resource selection, core‐use area concepts and dynamic occupancy models provides a flexible approach to identify population‐level mechanisms driving species persistence and key areas for conservation protection. |
doi_str_mv | 10.1111/ddi.13066 |
format | article |
fullrecord | <record><control><sourceid>jstor_JFNAL</sourceid><recordid>TN_cdi_proquest_journals_2417961380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26918262</jstor_id><sourcerecordid>26918262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-f831611124a97ccc94c69d4301573d0c8100dfd3fd452eda76cc746383e858263</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4ufAAh4MpFZ3Jr2i5lxsvAgAi6DjFJS4Y2qUmL9O2NVt15NufA-f5z-QG4xGiFU6y1titMEedHYIFZQTLGGTlONeU8q3LMT8FZjAeEEKU5WYDmeZRusPVkXQNjLwfrB9P1PsgWeqXGXjo1QT052VkVoXQadmM72GwyMkDlg8nGaKAMRqbuAGUaYpQ1EQbpGgPf_Oi0DNM5OKllG83FT16C1_u7l81jtn962G1u95miOeNZXVLM0x-EyapQSlVM8UozinBeUI1UiRHStaa1ZjkxWhZcqYJxWlJT5iXhdAmu57l98O-jiYM4-DG4tFIQhouKY1qiRN3MlAo-xmBq0QfbpTMFRuLLR5F8FN8-JnY9sx-2NdP_oNhud7-Kq1lxiIMPfwrCK5xOJPQTrPB-Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417961380</pqid></control><display><type>article</type><title>Quantifying spatiotemporal occupancy dynamics and multi-year core-use areas at a species range boundary</title><source>Jstor Journals Open Access</source><creator>Hostetter, Nathan J. ; Ryan, Daniel ; Grosshuesch, David ; Catton, Timothy ; Malick-Wahls, Sarah ; Smith, Tamara A. ; Gardner, Beth</creator><contributor>Alice, Hughes</contributor><creatorcontrib>Hostetter, Nathan J. ; Ryan, Daniel ; Grosshuesch, David ; Catton, Timothy ; Malick-Wahls, Sarah ; Smith, Tamara A. ; Gardner, Beth ; Alice, Hughes</creatorcontrib><description>Aim
Many species face large‐scale range contractions and predicted distributional shifts in response to climate change, shifting forest characteristics and anthropogenic disturbances. Canada lynx (Lynx canadensis) are listed as threatened under the U.S. Endangered Species Act and were recently recommended for delisting. Predicted climate‐driven losses in habitat quality and quantity may negatively affect the north‐eastern Minnesota lynx population, one of the six remaining resident populations in the contiguous United States. We develop a large‐scale monitoring protocol and dynamic occupancy modelling framework to identify multi‐year core‐use areas and track spatiotemporal occurrence at the southern periphery of the species range.
Location
North‐eastern Minnesota lynx geographic unit, Superior National Forest and designated critical habitat, Minnesota, USA.
Methods
Spatially and temporally replicated snow track surveys were used to collect lynx detection/non‐detection data across five winters (2014–15 to 2018–19) covering >17,000 km within the 22,100 km2 study area. We used a dynamic occupancy model to evaluate lynx occupancy, persistence, colonization and habitat covariates affecting these processes.
Results
Lynx occupancy probabilities displayed high spatial and temporal variability, with grid cell‐specific probabilities ranging from 0.0 in periphery regions to consistently near 1.0 in multi‐year core‐use areas, indicating low turnover rates in those areas. Lynx colonization and persistence increased in areas with more evergreen forest and greater average snowfall, while forest characteristics (3–5 and 10–30 m vegetation density) had mixed relationships with occupancy dynamics. We identified 55 grid cells classified as multi‐year core‐use areas across relatively contiguous regions of high average snowfall and per cent conifer forest.
Main conclusions
Our study demonstrates a landscape‐scale multi‐year monitoring programme assessing the effects of habitat characteristics and anthropogenic factors on species distributional changes and landscape‐level occupancy dynamics. Our framework incorporating landscape‐scale resource selection, core‐use area concepts and dynamic occupancy models provides a flexible approach to identify population‐level mechanisms driving species persistence and key areas for conservation protection.</description><identifier>ISSN: 1366-9516</identifier><identifier>EISSN: 1472-4642</identifier><identifier>DOI: 10.1111/ddi.13066</identifier><language>eng</language><publisher>Oxford: Wiley</publisher><subject>Anthropogenic factors ; BIODIVERSITY RESEARCH ; Canada lynx ; Climate change ; Climate prediction ; Colonization ; Coniferous forests ; core area ; detection probability ; dynamic occupancy ; Endangered & extinct species ; Endangered species ; Forests ; Habitats ; Landscape ; Lynx canadensis ; Lynx lynx ; Monitoring ; Occupancy ; range dynamics ; site occupancy ; Snowfall ; turnover ; Wildlife conservation</subject><ispartof>Diversity & distributions, 2020-07, Vol.26 (7), p.795-805</ispartof><rights>2020 The Authors</rights><rights>2020 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-f831611124a97ccc94c69d4301573d0c8100dfd3fd452eda76cc746383e858263</citedby><cites>FETCH-LOGICAL-c3546-f831611124a97ccc94c69d4301573d0c8100dfd3fd452eda76cc746383e858263</cites><orcidid>0000-0002-9624-2981 ; 0000-0001-6075-2157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2417961380/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2417961380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11542,25333,25732,27903,27904,36991,44569,46031,46455,54503,54509,58217,58450,74873</link.rule.ids><linktorsrc>$$Uhttps://www.jstor.org/stable/26918262$$EView_record_in_JSTOR$$FView_record_in_$$GJSTOR</linktorsrc></links><search><contributor>Alice, Hughes</contributor><creatorcontrib>Hostetter, Nathan J.</creatorcontrib><creatorcontrib>Ryan, Daniel</creatorcontrib><creatorcontrib>Grosshuesch, David</creatorcontrib><creatorcontrib>Catton, Timothy</creatorcontrib><creatorcontrib>Malick-Wahls, Sarah</creatorcontrib><creatorcontrib>Smith, Tamara A.</creatorcontrib><creatorcontrib>Gardner, Beth</creatorcontrib><title>Quantifying spatiotemporal occupancy dynamics and multi-year core-use areas at a species range boundary</title><title>Diversity & distributions</title><description>Aim
Many species face large‐scale range contractions and predicted distributional shifts in response to climate change, shifting forest characteristics and anthropogenic disturbances. Canada lynx (Lynx canadensis) are listed as threatened under the U.S. Endangered Species Act and were recently recommended for delisting. Predicted climate‐driven losses in habitat quality and quantity may negatively affect the north‐eastern Minnesota lynx population, one of the six remaining resident populations in the contiguous United States. We develop a large‐scale monitoring protocol and dynamic occupancy modelling framework to identify multi‐year core‐use areas and track spatiotemporal occurrence at the southern periphery of the species range.
Location
North‐eastern Minnesota lynx geographic unit, Superior National Forest and designated critical habitat, Minnesota, USA.
Methods
Spatially and temporally replicated snow track surveys were used to collect lynx detection/non‐detection data across five winters (2014–15 to 2018–19) covering >17,000 km within the 22,100 km2 study area. We used a dynamic occupancy model to evaluate lynx occupancy, persistence, colonization and habitat covariates affecting these processes.
Results
Lynx occupancy probabilities displayed high spatial and temporal variability, with grid cell‐specific probabilities ranging from 0.0 in periphery regions to consistently near 1.0 in multi‐year core‐use areas, indicating low turnover rates in those areas. Lynx colonization and persistence increased in areas with more evergreen forest and greater average snowfall, while forest characteristics (3–5 and 10–30 m vegetation density) had mixed relationships with occupancy dynamics. We identified 55 grid cells classified as multi‐year core‐use areas across relatively contiguous regions of high average snowfall and per cent conifer forest.
Main conclusions
Our study demonstrates a landscape‐scale multi‐year monitoring programme assessing the effects of habitat characteristics and anthropogenic factors on species distributional changes and landscape‐level occupancy dynamics. Our framework incorporating landscape‐scale resource selection, core‐use area concepts and dynamic occupancy models provides a flexible approach to identify population‐level mechanisms driving species persistence and key areas for conservation protection.</description><subject>Anthropogenic factors</subject><subject>BIODIVERSITY RESEARCH</subject><subject>Canada lynx</subject><subject>Climate change</subject><subject>Climate prediction</subject><subject>Colonization</subject><subject>Coniferous forests</subject><subject>core area</subject><subject>detection probability</subject><subject>dynamic occupancy</subject><subject>Endangered & extinct species</subject><subject>Endangered species</subject><subject>Forests</subject><subject>Habitats</subject><subject>Landscape</subject><subject>Lynx canadensis</subject><subject>Lynx lynx</subject><subject>Monitoring</subject><subject>Occupancy</subject><subject>range dynamics</subject><subject>site occupancy</subject><subject>Snowfall</subject><subject>turnover</subject><subject>Wildlife conservation</subject><issn>1366-9516</issn><issn>1472-4642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kMtKxDAUhoMoOI4ufAAh4MpFZ3Jr2i5lxsvAgAi6DjFJS4Y2qUmL9O2NVt15NufA-f5z-QG4xGiFU6y1titMEedHYIFZQTLGGTlONeU8q3LMT8FZjAeEEKU5WYDmeZRusPVkXQNjLwfrB9P1PsgWeqXGXjo1QT052VkVoXQadmM72GwyMkDlg8nGaKAMRqbuAGUaYpQ1EQbpGgPf_Oi0DNM5OKllG83FT16C1_u7l81jtn962G1u95miOeNZXVLM0x-EyapQSlVM8UozinBeUI1UiRHStaa1ZjkxWhZcqYJxWlJT5iXhdAmu57l98O-jiYM4-DG4tFIQhouKY1qiRN3MlAo-xmBq0QfbpTMFRuLLR5F8FN8-JnY9sx-2NdP_oNhud7-Kq1lxiIMPfwrCK5xOJPQTrPB-Eg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Hostetter, Nathan J.</creator><creator>Ryan, Daniel</creator><creator>Grosshuesch, David</creator><creator>Catton, Timothy</creator><creator>Malick-Wahls, Sarah</creator><creator>Smith, Tamara A.</creator><creator>Gardner, Beth</creator><general>Wiley</general><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9624-2981</orcidid><orcidid>https://orcid.org/0000-0001-6075-2157</orcidid></search><sort><creationdate>20200701</creationdate><title>Quantifying spatiotemporal occupancy dynamics and multi-year core-use areas at a species range boundary</title><author>Hostetter, Nathan J. ; Ryan, Daniel ; Grosshuesch, David ; Catton, Timothy ; Malick-Wahls, Sarah ; Smith, Tamara A. ; Gardner, Beth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-f831611124a97ccc94c69d4301573d0c8100dfd3fd452eda76cc746383e858263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anthropogenic factors</topic><topic>BIODIVERSITY RESEARCH</topic><topic>Canada lynx</topic><topic>Climate change</topic><topic>Climate prediction</topic><topic>Colonization</topic><topic>Coniferous forests</topic><topic>core area</topic><topic>detection probability</topic><topic>dynamic occupancy</topic><topic>Endangered & extinct species</topic><topic>Endangered species</topic><topic>Forests</topic><topic>Habitats</topic><topic>Landscape</topic><topic>Lynx canadensis</topic><topic>Lynx lynx</topic><topic>Monitoring</topic><topic>Occupancy</topic><topic>range dynamics</topic><topic>site occupancy</topic><topic>Snowfall</topic><topic>turnover</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hostetter, Nathan J.</creatorcontrib><creatorcontrib>Ryan, Daniel</creatorcontrib><creatorcontrib>Grosshuesch, David</creatorcontrib><creatorcontrib>Catton, Timothy</creatorcontrib><creatorcontrib>Malick-Wahls, Sarah</creatorcontrib><creatorcontrib>Smith, Tamara A.</creatorcontrib><creatorcontrib>Gardner, Beth</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Diversity & distributions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hostetter, Nathan J.</au><au>Ryan, Daniel</au><au>Grosshuesch, David</au><au>Catton, Timothy</au><au>Malick-Wahls, Sarah</au><au>Smith, Tamara A.</au><au>Gardner, Beth</au><au>Alice, Hughes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying spatiotemporal occupancy dynamics and multi-year core-use areas at a species range boundary</atitle><jtitle>Diversity & distributions</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>26</volume><issue>7</issue><spage>795</spage><epage>805</epage><pages>795-805</pages><issn>1366-9516</issn><eissn>1472-4642</eissn><abstract>Aim
Many species face large‐scale range contractions and predicted distributional shifts in response to climate change, shifting forest characteristics and anthropogenic disturbances. Canada lynx (Lynx canadensis) are listed as threatened under the U.S. Endangered Species Act and were recently recommended for delisting. Predicted climate‐driven losses in habitat quality and quantity may negatively affect the north‐eastern Minnesota lynx population, one of the six remaining resident populations in the contiguous United States. We develop a large‐scale monitoring protocol and dynamic occupancy modelling framework to identify multi‐year core‐use areas and track spatiotemporal occurrence at the southern periphery of the species range.
Location
North‐eastern Minnesota lynx geographic unit, Superior National Forest and designated critical habitat, Minnesota, USA.
Methods
Spatially and temporally replicated snow track surveys were used to collect lynx detection/non‐detection data across five winters (2014–15 to 2018–19) covering >17,000 km within the 22,100 km2 study area. We used a dynamic occupancy model to evaluate lynx occupancy, persistence, colonization and habitat covariates affecting these processes.
Results
Lynx occupancy probabilities displayed high spatial and temporal variability, with grid cell‐specific probabilities ranging from 0.0 in periphery regions to consistently near 1.0 in multi‐year core‐use areas, indicating low turnover rates in those areas. Lynx colonization and persistence increased in areas with more evergreen forest and greater average snowfall, while forest characteristics (3–5 and 10–30 m vegetation density) had mixed relationships with occupancy dynamics. We identified 55 grid cells classified as multi‐year core‐use areas across relatively contiguous regions of high average snowfall and per cent conifer forest.
Main conclusions
Our study demonstrates a landscape‐scale multi‐year monitoring programme assessing the effects of habitat characteristics and anthropogenic factors on species distributional changes and landscape‐level occupancy dynamics. Our framework incorporating landscape‐scale resource selection, core‐use area concepts and dynamic occupancy models provides a flexible approach to identify population‐level mechanisms driving species persistence and key areas for conservation protection.</abstract><cop>Oxford</cop><pub>Wiley</pub><doi>10.1111/ddi.13066</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9624-2981</orcidid><orcidid>https://orcid.org/0000-0001-6075-2157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1366-9516 |
ispartof | Diversity & distributions, 2020-07, Vol.26 (7), p.795-805 |
issn | 1366-9516 1472-4642 |
language | eng |
recordid | cdi_proquest_journals_2417961380 |
source | Jstor Journals Open Access |
subjects | Anthropogenic factors BIODIVERSITY RESEARCH Canada lynx Climate change Climate prediction Colonization Coniferous forests core area detection probability dynamic occupancy Endangered & extinct species Endangered species Forests Habitats Landscape Lynx canadensis Lynx lynx Monitoring Occupancy range dynamics site occupancy Snowfall turnover Wildlife conservation |
title | Quantifying spatiotemporal occupancy dynamics and multi-year core-use areas at a species range boundary |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_JFNAL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20spatiotemporal%20occupancy%20dynamics%20and%20multi-year%20core-use%20areas%20at%20a%20species%20range%20boundary&rft.jtitle=Diversity%20&%20distributions&rft.au=Hostetter,%20Nathan%20J.&rft.date=2020-07-01&rft.volume=26&rft.issue=7&rft.spage=795&rft.epage=805&rft.pages=795-805&rft.issn=1366-9516&rft.eissn=1472-4642&rft_id=info:doi/10.1111/ddi.13066&rft_dat=%3Cjstor_JFNAL%3E26918262%3C/jstor_JFNAL%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3546-f831611124a97ccc94c69d4301573d0c8100dfd3fd452eda76cc746383e858263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417961380&rft_id=info:pmid/&rft_jstor_id=26918262&rfr_iscdi=true |