Loading…
Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy
Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-ent...
Saved in:
Published in: | Journal of materials research 2020-06, Vol.35 (12), p.1556-1571 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593 |
container_end_page | 1571 |
container_issue | 12 |
container_start_page | 1556 |
container_title | Journal of materials research |
container_volume | 35 |
creator | Raman, Lavanya Karthick, G. Guruvidyathri, K. Fabijanic, Daniel Narayana Murty, S. V. S. Murty, B. S. Kottada, Ravi S. |
description | Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations. |
doi_str_mv | 10.1557/jmr.2020.128 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2417968333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2020_128</cupid><sourcerecordid>2417968333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593</originalsourceid><addsrcrecordid>eNqFkMFq3DAURUVJodNpd_0AQbfxVJIly7MMQ5IG0mST0qWRpecZDbY1eZID_o1-cWQm0FWJNkKXc-_Tu4R842zDldI_jgNuBBP5JeoPZCWYlIUqRXVBVqyuZSG2XH4in2M8MsYV03JF_t6NXT_BaIGGjp4wWIjRj3uKYUpZG2k6ADV9H-ZFbeFgXnzASzp4iyEmnGya0PQUXkI_JZ8NZnSLCYesxmRa3_s0L-k7_BUe2if_hyJ0aGwKONOD3x8KGBOG03ye84V87Ewf4evbvSa_b66fdj-L-8fbu93VfWFLyVLRSqnrEjojq9ZtnTDCGOVUBZYrbrXVWWVMSeMAoDTCuapSmltnWq1btS3X5Ps5N2_9PEFMzTFMOOaRjZBcb6u6zGdNLs_Usm7MH29O6AeDc8NZs7Te5NabpfUmt57x4ozHjI17wH-h_-E3b_FmaNG7PbxjeAWFIphO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417968333</pqid></control><display><type>article</type><title>Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Raman, Lavanya ; Karthick, G. ; Guruvidyathri, K. ; Fabijanic, Daniel ; Narayana Murty, S. V. S. ; Murty, B. S. ; Kottada, Ravi S.</creator><creatorcontrib>Raman, Lavanya ; Karthick, G. ; Guruvidyathri, K. ; Fabijanic, Daniel ; Narayana Murty, S. V. S. ; Murty, B. S. ; Kottada, Ravi S.</creatorcontrib><description>Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2020.128</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloy powders ; Alloys ; Applied and Technical Physics ; Biomaterials ; Carbon ; Computer simulation ; Contaminants ; Electric arc melting ; Entropy ; Evolution ; Heat treatment ; High entropy alloys ; Homology ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Mechanical alloying ; Microstructure ; Morphology ; Nanotechnology ; Novel Synthesis and Processing of Metals ; Organic and Hybrid Functional Materials ; Phase diagrams ; Plasma sintering ; Powder metallurgy ; Process controls ; Sigma phase ; Solid solutions ; Spark plasma sintering ; Temperature ; Thermal stability ; Vacuum arc melting</subject><ispartof>Journal of materials research, 2020-06, Vol.35 (12), p.1556-1571</ispartof><rights>Copyright © Materials Research Society 2020</rights><rights>The Materials Research Society 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593</citedby><cites>FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593</cites><orcidid>0000-0002-4411-817X ; 0000-0002-4399-8531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2417968333/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2417968333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Raman, Lavanya</creatorcontrib><creatorcontrib>Karthick, G.</creatorcontrib><creatorcontrib>Guruvidyathri, K.</creatorcontrib><creatorcontrib>Fabijanic, Daniel</creatorcontrib><creatorcontrib>Narayana Murty, S. V. S.</creatorcontrib><creatorcontrib>Murty, B. S.</creatorcontrib><creatorcontrib>Kottada, Ravi S.</creatorcontrib><title>Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.</description><subject>Alloy powders</subject><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Contaminants</subject><subject>Electric arc melting</subject><subject>Entropy</subject><subject>Evolution</subject><subject>Heat treatment</subject><subject>High entropy alloys</subject><subject>Homology</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical alloying</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Novel Synthesis and Processing of Metals</subject><subject>Organic and Hybrid Functional Materials</subject><subject>Phase diagrams</subject><subject>Plasma sintering</subject><subject>Powder metallurgy</subject><subject>Process controls</subject><subject>Sigma phase</subject><subject>Solid solutions</subject><subject>Spark plasma sintering</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Vacuum arc melting</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkMFq3DAURUVJodNpd_0AQbfxVJIly7MMQ5IG0mST0qWRpecZDbY1eZID_o1-cWQm0FWJNkKXc-_Tu4R842zDldI_jgNuBBP5JeoPZCWYlIUqRXVBVqyuZSG2XH4in2M8MsYV03JF_t6NXT_BaIGGjp4wWIjRj3uKYUpZG2k6ADV9H-ZFbeFgXnzASzp4iyEmnGya0PQUXkI_JZ8NZnSLCYesxmRa3_s0L-k7_BUe2if_hyJ0aGwKONOD3x8KGBOG03ye84V87Ewf4evbvSa_b66fdj-L-8fbu93VfWFLyVLRSqnrEjojq9ZtnTDCGOVUBZYrbrXVWWVMSeMAoDTCuapSmltnWq1btS3X5Ps5N2_9PEFMzTFMOOaRjZBcb6u6zGdNLs_Usm7MH29O6AeDc8NZs7Te5NabpfUmt57x4ozHjI17wH-h_-E3b_FmaNG7PbxjeAWFIphO</recordid><startdate>20200629</startdate><enddate>20200629</enddate><creator>Raman, Lavanya</creator><creator>Karthick, G.</creator><creator>Guruvidyathri, K.</creator><creator>Fabijanic, Daniel</creator><creator>Narayana Murty, S. V. S.</creator><creator>Murty, B. S.</creator><creator>Kottada, Ravi S.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4411-817X</orcidid><orcidid>https://orcid.org/0000-0002-4399-8531</orcidid></search><sort><creationdate>20200629</creationdate><title>Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy</title><author>Raman, Lavanya ; Karthick, G. ; Guruvidyathri, K. ; Fabijanic, Daniel ; Narayana Murty, S. V. S. ; Murty, B. S. ; Kottada, Ravi S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy powders</topic><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Contaminants</topic><topic>Electric arc melting</topic><topic>Entropy</topic><topic>Evolution</topic><topic>Heat treatment</topic><topic>High entropy alloys</topic><topic>Homology</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical alloying</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Novel Synthesis and Processing of Metals</topic><topic>Organic and Hybrid Functional Materials</topic><topic>Phase diagrams</topic><topic>Plasma sintering</topic><topic>Powder metallurgy</topic><topic>Process controls</topic><topic>Sigma phase</topic><topic>Solid solutions</topic><topic>Spark plasma sintering</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Vacuum arc melting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raman, Lavanya</creatorcontrib><creatorcontrib>Karthick, G.</creatorcontrib><creatorcontrib>Guruvidyathri, K.</creatorcontrib><creatorcontrib>Fabijanic, Daniel</creatorcontrib><creatorcontrib>Narayana Murty, S. V. S.</creatorcontrib><creatorcontrib>Murty, B. S.</creatorcontrib><creatorcontrib>Kottada, Ravi S.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raman, Lavanya</au><au>Karthick, G.</au><au>Guruvidyathri, K.</au><au>Fabijanic, Daniel</au><au>Narayana Murty, S. V. S.</au><au>Murty, B. S.</au><au>Kottada, Ravi S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2020-06-29</date><risdate>2020</risdate><volume>35</volume><issue>12</issue><spage>1556</spage><epage>1571</epage><pages>1556-1571</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2020.128</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4411-817X</orcidid><orcidid>https://orcid.org/0000-0002-4399-8531</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2020-06, Vol.35 (12), p.1556-1571 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2417968333 |
source | ABI/INFORM Global; Springer Nature |
subjects | Alloy powders Alloys Applied and Technical Physics Biomaterials Carbon Computer simulation Contaminants Electric arc melting Entropy Evolution Heat treatment High entropy alloys Homology Inorganic Chemistry Materials Engineering Materials research Materials Science Mechanical alloying Microstructure Morphology Nanotechnology Novel Synthesis and Processing of Metals Organic and Hybrid Functional Materials Phase diagrams Plasma sintering Powder metallurgy Process controls Sigma phase Solid solutions Spark plasma sintering Temperature Thermal stability Vacuum arc melting |
title | Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20processing%20route%20on%20the%20alloying%20behavior,%20microstructural%20evolution%20and%20thermal%20stability%20of%20CrMoNbTiW%20refractory%20high-entropy%20alloy&rft.jtitle=Journal%20of%20materials%20research&rft.au=Raman,%20Lavanya&rft.date=2020-06-29&rft.volume=35&rft.issue=12&rft.spage=1556&rft.epage=1571&rft.pages=1556-1571&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2020.128&rft_dat=%3Cproquest_cross%3E2417968333%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417968333&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2020_128&rfr_iscdi=true |