Loading…

Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy

Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-ent...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2020-06, Vol.35 (12), p.1556-1571
Main Authors: Raman, Lavanya, Karthick, G., Guruvidyathri, K., Fabijanic, Daniel, Narayana Murty, S. V. S., Murty, B. S., Kottada, Ravi S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593
cites cdi_FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593
container_end_page 1571
container_issue 12
container_start_page 1556
container_title Journal of materials research
container_volume 35
creator Raman, Lavanya
Karthick, G.
Guruvidyathri, K.
Fabijanic, Daniel
Narayana Murty, S. V. S.
Murty, B. S.
Kottada, Ravi S.
description Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.
doi_str_mv 10.1557/jmr.2020.128
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2417968333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2020_128</cupid><sourcerecordid>2417968333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593</originalsourceid><addsrcrecordid>eNqFkMFq3DAURUVJodNpd_0AQbfxVJIly7MMQ5IG0mST0qWRpecZDbY1eZID_o1-cWQm0FWJNkKXc-_Tu4R842zDldI_jgNuBBP5JeoPZCWYlIUqRXVBVqyuZSG2XH4in2M8MsYV03JF_t6NXT_BaIGGjp4wWIjRj3uKYUpZG2k6ADV9H-ZFbeFgXnzASzp4iyEmnGya0PQUXkI_JZ8NZnSLCYesxmRa3_s0L-k7_BUe2if_hyJ0aGwKONOD3x8KGBOG03ye84V87Ewf4evbvSa_b66fdj-L-8fbu93VfWFLyVLRSqnrEjojq9ZtnTDCGOVUBZYrbrXVWWVMSeMAoDTCuapSmltnWq1btS3X5Ps5N2_9PEFMzTFMOOaRjZBcb6u6zGdNLs_Usm7MH29O6AeDc8NZs7Te5NabpfUmt57x4ozHjI17wH-h_-E3b_FmaNG7PbxjeAWFIphO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417968333</pqid></control><display><type>article</type><title>Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Raman, Lavanya ; Karthick, G. ; Guruvidyathri, K. ; Fabijanic, Daniel ; Narayana Murty, S. V. S. ; Murty, B. S. ; Kottada, Ravi S.</creator><creatorcontrib>Raman, Lavanya ; Karthick, G. ; Guruvidyathri, K. ; Fabijanic, Daniel ; Narayana Murty, S. V. S. ; Murty, B. S. ; Kottada, Ravi S.</creatorcontrib><description>Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2020.128</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloy powders ; Alloys ; Applied and Technical Physics ; Biomaterials ; Carbon ; Computer simulation ; Contaminants ; Electric arc melting ; Entropy ; Evolution ; Heat treatment ; High entropy alloys ; Homology ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Mechanical alloying ; Microstructure ; Morphology ; Nanotechnology ; Novel Synthesis and Processing of Metals ; Organic and Hybrid Functional Materials ; Phase diagrams ; Plasma sintering ; Powder metallurgy ; Process controls ; Sigma phase ; Solid solutions ; Spark plasma sintering ; Temperature ; Thermal stability ; Vacuum arc melting</subject><ispartof>Journal of materials research, 2020-06, Vol.35 (12), p.1556-1571</ispartof><rights>Copyright © Materials Research Society 2020</rights><rights>The Materials Research Society 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593</citedby><cites>FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593</cites><orcidid>0000-0002-4411-817X ; 0000-0002-4399-8531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2417968333/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2417968333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Raman, Lavanya</creatorcontrib><creatorcontrib>Karthick, G.</creatorcontrib><creatorcontrib>Guruvidyathri, K.</creatorcontrib><creatorcontrib>Fabijanic, Daniel</creatorcontrib><creatorcontrib>Narayana Murty, S. V. S.</creatorcontrib><creatorcontrib>Murty, B. S.</creatorcontrib><creatorcontrib>Kottada, Ravi S.</creatorcontrib><title>Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.</description><subject>Alloy powders</subject><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Contaminants</subject><subject>Electric arc melting</subject><subject>Entropy</subject><subject>Evolution</subject><subject>Heat treatment</subject><subject>High entropy alloys</subject><subject>Homology</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical alloying</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Novel Synthesis and Processing of Metals</subject><subject>Organic and Hybrid Functional Materials</subject><subject>Phase diagrams</subject><subject>Plasma sintering</subject><subject>Powder metallurgy</subject><subject>Process controls</subject><subject>Sigma phase</subject><subject>Solid solutions</subject><subject>Spark plasma sintering</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Vacuum arc melting</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkMFq3DAURUVJodNpd_0AQbfxVJIly7MMQ5IG0mST0qWRpecZDbY1eZID_o1-cWQm0FWJNkKXc-_Tu4R842zDldI_jgNuBBP5JeoPZCWYlIUqRXVBVqyuZSG2XH4in2M8MsYV03JF_t6NXT_BaIGGjp4wWIjRj3uKYUpZG2k6ADV9H-ZFbeFgXnzASzp4iyEmnGya0PQUXkI_JZ8NZnSLCYesxmRa3_s0L-k7_BUe2if_hyJ0aGwKONOD3x8KGBOG03ye84V87Ewf4evbvSa_b66fdj-L-8fbu93VfWFLyVLRSqnrEjojq9ZtnTDCGOVUBZYrbrXVWWVMSeMAoDTCuapSmltnWq1btS3X5Ps5N2_9PEFMzTFMOOaRjZBcb6u6zGdNLs_Usm7MH29O6AeDc8NZs7Te5NabpfUmt57x4ozHjI17wH-h_-E3b_FmaNG7PbxjeAWFIphO</recordid><startdate>20200629</startdate><enddate>20200629</enddate><creator>Raman, Lavanya</creator><creator>Karthick, G.</creator><creator>Guruvidyathri, K.</creator><creator>Fabijanic, Daniel</creator><creator>Narayana Murty, S. V. S.</creator><creator>Murty, B. S.</creator><creator>Kottada, Ravi S.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4411-817X</orcidid><orcidid>https://orcid.org/0000-0002-4399-8531</orcidid></search><sort><creationdate>20200629</creationdate><title>Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy</title><author>Raman, Lavanya ; Karthick, G. ; Guruvidyathri, K. ; Fabijanic, Daniel ; Narayana Murty, S. V. S. ; Murty, B. S. ; Kottada, Ravi S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy powders</topic><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Contaminants</topic><topic>Electric arc melting</topic><topic>Entropy</topic><topic>Evolution</topic><topic>Heat treatment</topic><topic>High entropy alloys</topic><topic>Homology</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical alloying</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Novel Synthesis and Processing of Metals</topic><topic>Organic and Hybrid Functional Materials</topic><topic>Phase diagrams</topic><topic>Plasma sintering</topic><topic>Powder metallurgy</topic><topic>Process controls</topic><topic>Sigma phase</topic><topic>Solid solutions</topic><topic>Spark plasma sintering</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Vacuum arc melting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raman, Lavanya</creatorcontrib><creatorcontrib>Karthick, G.</creatorcontrib><creatorcontrib>Guruvidyathri, K.</creatorcontrib><creatorcontrib>Fabijanic, Daniel</creatorcontrib><creatorcontrib>Narayana Murty, S. V. S.</creatorcontrib><creatorcontrib>Murty, B. S.</creatorcontrib><creatorcontrib>Kottada, Ravi S.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raman, Lavanya</au><au>Karthick, G.</au><au>Guruvidyathri, K.</au><au>Fabijanic, Daniel</au><au>Narayana Murty, S. V. S.</au><au>Murty, B. S.</au><au>Kottada, Ravi S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2020-06-29</date><risdate>2020</risdate><volume>35</volume><issue>12</issue><spage>1556</spage><epage>1571</epage><pages>1556-1571</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2020.128</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4411-817X</orcidid><orcidid>https://orcid.org/0000-0002-4399-8531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2020-06, Vol.35 (12), p.1556-1571
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2417968333
source ABI/INFORM Global; Springer Nature
subjects Alloy powders
Alloys
Applied and Technical Physics
Biomaterials
Carbon
Computer simulation
Contaminants
Electric arc melting
Entropy
Evolution
Heat treatment
High entropy alloys
Homology
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Mechanical alloying
Microstructure
Morphology
Nanotechnology
Novel Synthesis and Processing of Metals
Organic and Hybrid Functional Materials
Phase diagrams
Plasma sintering
Powder metallurgy
Process controls
Sigma phase
Solid solutions
Spark plasma sintering
Temperature
Thermal stability
Vacuum arc melting
title Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20processing%20route%20on%20the%20alloying%20behavior,%20microstructural%20evolution%20and%20thermal%20stability%20of%20CrMoNbTiW%20refractory%20high-entropy%20alloy&rft.jtitle=Journal%20of%20materials%20research&rft.au=Raman,%20Lavanya&rft.date=2020-06-29&rft.volume=35&rft.issue=12&rft.spage=1556&rft.epage=1571&rft.pages=1556-1571&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2020.128&rft_dat=%3Cproquest_cross%3E2417968333%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-b44783efa46bd9d2a2aa5d56ec151c7c7bd90054adeee3a2dd66571cdab77b593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417968333&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2020_128&rfr_iscdi=true