Loading…

Distributed modeling of smart parking system using LSTM with stochastic periodic predictions

Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2020-07, Vol.32 (14), p.10783-10796
Main Authors: Anagnostopoulos, Theodoros, Fedchenkov, Petr, Tsotsolas, Nikos, Ntalianis, Klimis, Zaslavsky, Arkady, Salmon, Ioannis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033
cites cdi_FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033
container_end_page 10796
container_issue 14
container_start_page 10783
container_title Neural computing & applications
container_volume 32
creator Anagnostopoulos, Theodoros
Fedchenkov, Petr
Tsotsolas, Nikos
Ntalianis, Klimis
Zaslavsky, Arkady
Salmon, Ioannis
description Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this paper, we propose to model smart parking (SP) with multiagent system (MAS) using long short-term memory (LSTM) neural network. Our model outperforms similar approaches as evidenced from the presented results using an online dataset from the SC of Aarhus, Denmark. We use LSTM for stochastic prediction based on periodic data provided by parking sensors. A SP provides such data on daily basis over a short period of time in the SC. We evaluate the proposed MAS with the prediction accuracy metric and compare it with other approaches in the literature. The proposed system achieves higher prediction accuracy per daily basis than the compared approaches due to our stochastic periodic prediction design and input to the proposed MAS and LSTM model. In addition, LSTM is used more efficiently under the proposed architecture of MAS, which enables online scaling thanks to dynamic and distributed nature of MAS.
doi_str_mv 10.1007/s00521-019-04613-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418452262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418452262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBX0viIeEtFHCg3JMtJ7NaljYPXEcrf4xAkbpxmHzOz2kHonJJLSsjiCgjJGc0IlRkRBeXZcIBmVHCecZKXh2hGpEjrQvBjdAKwJSTRynyG3m8dxOCqPpoG731jdq5dY28x7HWIuNPhYxzAANHscQ9js3xdPeMvFzcYoq83GqKrcWeC881YBJMgOt_CKTqyegfm7Bfn6O3-bnXzmC1fHp5urpdZzfMyZkVZV2yRS6ZtZSXj2thC6oVsSlMUklWV4dIKmhvd1MQIIxsmLKM8p5JISTifo4vJtwv-szcQ1db3oU0nFRO0FDljBUssNrHq4AGCsaoLLn05KErUmKKaUlQpRfWTohqSiE8iSOR2bcKf9T-qb7k7dss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418452262</pqid></control><display><type>article</type><title>Distributed modeling of smart parking system using LSTM with stochastic periodic predictions</title><source>Springer Nature</source><creator>Anagnostopoulos, Theodoros ; Fedchenkov, Petr ; Tsotsolas, Nikos ; Ntalianis, Klimis ; Zaslavsky, Arkady ; Salmon, Ioannis</creator><creatorcontrib>Anagnostopoulos, Theodoros ; Fedchenkov, Petr ; Tsotsolas, Nikos ; Ntalianis, Klimis ; Zaslavsky, Arkady ; Salmon, Ioannis</creatorcontrib><description>Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this paper, we propose to model smart parking (SP) with multiagent system (MAS) using long short-term memory (LSTM) neural network. Our model outperforms similar approaches as evidenced from the presented results using an online dataset from the SC of Aarhus, Denmark. We use LSTM for stochastic prediction based on periodic data provided by parking sensors. A SP provides such data on daily basis over a short period of time in the SC. We evaluate the proposed MAS with the prediction accuracy metric and compare it with other approaches in the literature. The proposed system achieves higher prediction accuracy per daily basis than the compared approaches due to our stochastic periodic prediction design and input to the proposed MAS and LSTM model. In addition, LSTM is used more efficiently under the proposed architecture of MAS, which enables online scaling thanks to dynamic and distributed nature of MAS.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04613-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Fuel economy ; Fuels ; Image Processing and Computer Vision ; Multiagent systems ; Neural networks ; Original Article ; Parking ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2020-07, Vol.32 (14), p.10783-10796</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033</citedby><cites>FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033</cites><orcidid>0000-0002-5587-2848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anagnostopoulos, Theodoros</creatorcontrib><creatorcontrib>Fedchenkov, Petr</creatorcontrib><creatorcontrib>Tsotsolas, Nikos</creatorcontrib><creatorcontrib>Ntalianis, Klimis</creatorcontrib><creatorcontrib>Zaslavsky, Arkady</creatorcontrib><creatorcontrib>Salmon, Ioannis</creatorcontrib><title>Distributed modeling of smart parking system using LSTM with stochastic periodic predictions</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this paper, we propose to model smart parking (SP) with multiagent system (MAS) using long short-term memory (LSTM) neural network. Our model outperforms similar approaches as evidenced from the presented results using an online dataset from the SC of Aarhus, Denmark. We use LSTM for stochastic prediction based on periodic data provided by parking sensors. A SP provides such data on daily basis over a short period of time in the SC. We evaluate the proposed MAS with the prediction accuracy metric and compare it with other approaches in the literature. The proposed system achieves higher prediction accuracy per daily basis than the compared approaches due to our stochastic periodic prediction design and input to the proposed MAS and LSTM model. In addition, LSTM is used more efficiently under the proposed architecture of MAS, which enables online scaling thanks to dynamic and distributed nature of MAS.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Fuel economy</subject><subject>Fuels</subject><subject>Image Processing and Computer Vision</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Parking</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBX0viIeEtFHCg3JMtJ7NaljYPXEcrf4xAkbpxmHzOz2kHonJJLSsjiCgjJGc0IlRkRBeXZcIBmVHCecZKXh2hGpEjrQvBjdAKwJSTRynyG3m8dxOCqPpoG731jdq5dY28x7HWIuNPhYxzAANHscQ9js3xdPeMvFzcYoq83GqKrcWeC881YBJMgOt_CKTqyegfm7Bfn6O3-bnXzmC1fHp5urpdZzfMyZkVZV2yRS6ZtZSXj2thC6oVsSlMUklWV4dIKmhvd1MQIIxsmLKM8p5JISTifo4vJtwv-szcQ1db3oU0nFRO0FDljBUssNrHq4AGCsaoLLn05KErUmKKaUlQpRfWTohqSiE8iSOR2bcKf9T-qb7k7dss</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Anagnostopoulos, Theodoros</creator><creator>Fedchenkov, Petr</creator><creator>Tsotsolas, Nikos</creator><creator>Ntalianis, Klimis</creator><creator>Zaslavsky, Arkady</creator><creator>Salmon, Ioannis</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5587-2848</orcidid></search><sort><creationdate>20200701</creationdate><title>Distributed modeling of smart parking system using LSTM with stochastic periodic predictions</title><author>Anagnostopoulos, Theodoros ; Fedchenkov, Petr ; Tsotsolas, Nikos ; Ntalianis, Klimis ; Zaslavsky, Arkady ; Salmon, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Fuel economy</topic><topic>Fuels</topic><topic>Image Processing and Computer Vision</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Parking</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anagnostopoulos, Theodoros</creatorcontrib><creatorcontrib>Fedchenkov, Petr</creatorcontrib><creatorcontrib>Tsotsolas, Nikos</creatorcontrib><creatorcontrib>Ntalianis, Klimis</creatorcontrib><creatorcontrib>Zaslavsky, Arkady</creatorcontrib><creatorcontrib>Salmon, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anagnostopoulos, Theodoros</au><au>Fedchenkov, Petr</au><au>Tsotsolas, Nikos</au><au>Ntalianis, Klimis</au><au>Zaslavsky, Arkady</au><au>Salmon, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed modeling of smart parking system using LSTM with stochastic periodic predictions</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>14</issue><spage>10783</spage><epage>10796</epage><pages>10783-10796</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this paper, we propose to model smart parking (SP) with multiagent system (MAS) using long short-term memory (LSTM) neural network. Our model outperforms similar approaches as evidenced from the presented results using an online dataset from the SC of Aarhus, Denmark. We use LSTM for stochastic prediction based on periodic data provided by parking sensors. A SP provides such data on daily basis over a short period of time in the SC. We evaluate the proposed MAS with the prediction accuracy metric and compare it with other approaches in the literature. The proposed system achieves higher prediction accuracy per daily basis than the compared approaches due to our stochastic periodic prediction design and input to the proposed MAS and LSTM model. In addition, LSTM is used more efficiently under the proposed architecture of MAS, which enables online scaling thanks to dynamic and distributed nature of MAS.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04613-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5587-2848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-07, Vol.32 (14), p.10783-10796
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2418452262
source Springer Nature
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Fuel economy
Fuels
Image Processing and Computer Vision
Multiagent systems
Neural networks
Original Article
Parking
Probability and Statistics in Computer Science
title Distributed modeling of smart parking system using LSTM with stochastic periodic predictions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20modeling%20of%20smart%20parking%20system%20using%20LSTM%20with%20stochastic%20periodic%20predictions&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Anagnostopoulos,%20Theodoros&rft.date=2020-07-01&rft.volume=32&rft.issue=14&rft.spage=10783&rft.epage=10796&rft.pages=10783-10796&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04613-y&rft_dat=%3Cproquest_cross%3E2418452262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2418452262&rft_id=info:pmid/&rfr_iscdi=true