Loading…
Distributed modeling of smart parking system using LSTM with stochastic periodic predictions
Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this...
Saved in:
Published in: | Neural computing & applications 2020-07, Vol.32 (14), p.10783-10796 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033 |
container_end_page | 10796 |
container_issue | 14 |
container_start_page | 10783 |
container_title | Neural computing & applications |
container_volume | 32 |
creator | Anagnostopoulos, Theodoros Fedchenkov, Petr Tsotsolas, Nikos Ntalianis, Klimis Zaslavsky, Arkady Salmon, Ioannis |
description | Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this paper, we propose to model smart parking (SP) with multiagent system (MAS) using long short-term memory (LSTM) neural network. Our model outperforms similar approaches as evidenced from the presented results using an online dataset from the SC of Aarhus, Denmark. We use LSTM for stochastic prediction based on periodic data provided by parking sensors. A SP provides such data on daily basis over a short period of time in the SC. We evaluate the proposed MAS with the prediction accuracy metric and compare it with other approaches in the literature. The proposed system achieves higher prediction accuracy per daily basis than the compared approaches due to our stochastic periodic prediction design and input to the proposed MAS and LSTM model. In addition, LSTM is used more efficiently under the proposed architecture of MAS, which enables online scaling thanks to dynamic and distributed nature of MAS. |
doi_str_mv | 10.1007/s00521-019-04613-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418452262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418452262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBX0viIeEtFHCg3JMtJ7NaljYPXEcrf4xAkbpxmHzOz2kHonJJLSsjiCgjJGc0IlRkRBeXZcIBmVHCecZKXh2hGpEjrQvBjdAKwJSTRynyG3m8dxOCqPpoG731jdq5dY28x7HWIuNPhYxzAANHscQ9js3xdPeMvFzcYoq83GqKrcWeC881YBJMgOt_CKTqyegfm7Bfn6O3-bnXzmC1fHp5urpdZzfMyZkVZV2yRS6ZtZSXj2thC6oVsSlMUklWV4dIKmhvd1MQIIxsmLKM8p5JISTifo4vJtwv-szcQ1db3oU0nFRO0FDljBUssNrHq4AGCsaoLLn05KErUmKKaUlQpRfWTohqSiE8iSOR2bcKf9T-qb7k7dss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418452262</pqid></control><display><type>article</type><title>Distributed modeling of smart parking system using LSTM with stochastic periodic predictions</title><source>Springer Nature</source><creator>Anagnostopoulos, Theodoros ; Fedchenkov, Petr ; Tsotsolas, Nikos ; Ntalianis, Klimis ; Zaslavsky, Arkady ; Salmon, Ioannis</creator><creatorcontrib>Anagnostopoulos, Theodoros ; Fedchenkov, Petr ; Tsotsolas, Nikos ; Ntalianis, Klimis ; Zaslavsky, Arkady ; Salmon, Ioannis</creatorcontrib><description>Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this paper, we propose to model smart parking (SP) with multiagent system (MAS) using long short-term memory (LSTM) neural network. Our model outperforms similar approaches as evidenced from the presented results using an online dataset from the SC of Aarhus, Denmark. We use LSTM for stochastic prediction based on periodic data provided by parking sensors. A SP provides such data on daily basis over a short period of time in the SC. We evaluate the proposed MAS with the prediction accuracy metric and compare it with other approaches in the literature. The proposed system achieves higher prediction accuracy per daily basis than the compared approaches due to our stochastic periodic prediction design and input to the proposed MAS and LSTM model. In addition, LSTM is used more efficiently under the proposed architecture of MAS, which enables online scaling thanks to dynamic and distributed nature of MAS.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04613-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Fuel economy ; Fuels ; Image Processing and Computer Vision ; Multiagent systems ; Neural networks ; Original Article ; Parking ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2020-07, Vol.32 (14), p.10783-10796</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033</citedby><cites>FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033</cites><orcidid>0000-0002-5587-2848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anagnostopoulos, Theodoros</creatorcontrib><creatorcontrib>Fedchenkov, Petr</creatorcontrib><creatorcontrib>Tsotsolas, Nikos</creatorcontrib><creatorcontrib>Ntalianis, Klimis</creatorcontrib><creatorcontrib>Zaslavsky, Arkady</creatorcontrib><creatorcontrib>Salmon, Ioannis</creatorcontrib><title>Distributed modeling of smart parking system using LSTM with stochastic periodic predictions</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this paper, we propose to model smart parking (SP) with multiagent system (MAS) using long short-term memory (LSTM) neural network. Our model outperforms similar approaches as evidenced from the presented results using an online dataset from the SC of Aarhus, Denmark. We use LSTM for stochastic prediction based on periodic data provided by parking sensors. A SP provides such data on daily basis over a short period of time in the SC. We evaluate the proposed MAS with the prediction accuracy metric and compare it with other approaches in the literature. The proposed system achieves higher prediction accuracy per daily basis than the compared approaches due to our stochastic periodic prediction design and input to the proposed MAS and LSTM model. In addition, LSTM is used more efficiently under the proposed architecture of MAS, which enables online scaling thanks to dynamic and distributed nature of MAS.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Fuel economy</subject><subject>Fuels</subject><subject>Image Processing and Computer Vision</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Parking</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBX0viIeEtFHCg3JMtJ7NaljYPXEcrf4xAkbpxmHzOz2kHonJJLSsjiCgjJGc0IlRkRBeXZcIBmVHCecZKXh2hGpEjrQvBjdAKwJSTRynyG3m8dxOCqPpoG731jdq5dY28x7HWIuNPhYxzAANHscQ9js3xdPeMvFzcYoq83GqKrcWeC881YBJMgOt_CKTqyegfm7Bfn6O3-bnXzmC1fHp5urpdZzfMyZkVZV2yRS6ZtZSXj2thC6oVsSlMUklWV4dIKmhvd1MQIIxsmLKM8p5JISTifo4vJtwv-szcQ1db3oU0nFRO0FDljBUssNrHq4AGCsaoLLn05KErUmKKaUlQpRfWTohqSiE8iSOR2bcKf9T-qb7k7dss</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Anagnostopoulos, Theodoros</creator><creator>Fedchenkov, Petr</creator><creator>Tsotsolas, Nikos</creator><creator>Ntalianis, Klimis</creator><creator>Zaslavsky, Arkady</creator><creator>Salmon, Ioannis</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5587-2848</orcidid></search><sort><creationdate>20200701</creationdate><title>Distributed modeling of smart parking system using LSTM with stochastic periodic predictions</title><author>Anagnostopoulos, Theodoros ; Fedchenkov, Petr ; Tsotsolas, Nikos ; Ntalianis, Klimis ; Zaslavsky, Arkady ; Salmon, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Fuel economy</topic><topic>Fuels</topic><topic>Image Processing and Computer Vision</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Parking</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anagnostopoulos, Theodoros</creatorcontrib><creatorcontrib>Fedchenkov, Petr</creatorcontrib><creatorcontrib>Tsotsolas, Nikos</creatorcontrib><creatorcontrib>Ntalianis, Klimis</creatorcontrib><creatorcontrib>Zaslavsky, Arkady</creatorcontrib><creatorcontrib>Salmon, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anagnostopoulos, Theodoros</au><au>Fedchenkov, Petr</au><au>Tsotsolas, Nikos</au><au>Ntalianis, Klimis</au><au>Zaslavsky, Arkady</au><au>Salmon, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed modeling of smart parking system using LSTM with stochastic periodic predictions</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>14</issue><spage>10783</spage><epage>10796</epage><pages>10783-10796</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Parking in contemporary cities is a time- and fuel-consuming process. It affects daily stress levels of drivers and citizens. To design the future cities, parking process should be handled efficiently to improve drivers’ time comfort and fuel economy toward a green smart city (SC) ecosystem. In this paper, we propose to model smart parking (SP) with multiagent system (MAS) using long short-term memory (LSTM) neural network. Our model outperforms similar approaches as evidenced from the presented results using an online dataset from the SC of Aarhus, Denmark. We use LSTM for stochastic prediction based on periodic data provided by parking sensors. A SP provides such data on daily basis over a short period of time in the SC. We evaluate the proposed MAS with the prediction accuracy metric and compare it with other approaches in the literature. The proposed system achieves higher prediction accuracy per daily basis than the compared approaches due to our stochastic periodic prediction design and input to the proposed MAS and LSTM model. In addition, LSTM is used more efficiently under the proposed architecture of MAS, which enables online scaling thanks to dynamic and distributed nature of MAS.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04613-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5587-2848</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2020-07, Vol.32 (14), p.10783-10796 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2418452262 |
source | Springer Nature |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Fuel economy Fuels Image Processing and Computer Vision Multiagent systems Neural networks Original Article Parking Probability and Statistics in Computer Science |
title | Distributed modeling of smart parking system using LSTM with stochastic periodic predictions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20modeling%20of%20smart%20parking%20system%20using%20LSTM%20with%20stochastic%20periodic%20predictions&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Anagnostopoulos,%20Theodoros&rft.date=2020-07-01&rft.volume=32&rft.issue=14&rft.spage=10783&rft.epage=10796&rft.pages=10783-10796&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04613-y&rft_dat=%3Cproquest_cross%3E2418452262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-68cb27592afbf923aef69a79d8e6692bbe39f415eadc0e4e9d24f213519099033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2418452262&rft_id=info:pmid/&rfr_iscdi=true |