Loading…

Quantum walk on a graph of spins: magnetism and entanglement

We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one dimensional lattice, to investigate its magnetic and enta...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-06
Main Authors: Sellapillay, Kevissen, Verga, Alberto D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sellapillay, Kevissen
Verga, Alberto D
description We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one dimensional lattice, to investigate its magnetic and entanglement properties. In the continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation. Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the particle-spin coupling).
doi_str_mv 10.48550/arxiv.2006.14883
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2418458495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418458495</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-5b9f07de4a36a0b55eb0ea3850fbbf21d667359ca82b27848d5b5285d55ee8293</originalsourceid><addsrcrecordid>eNotjcFKxDAURYMgOIzzAe4CrlvTl7z2VdzIoI4wIMLshxeb1I5tWptW_XwLurpncThXiKtMpYYQ1Q2PP81XCkrlaWaI9JlYgdZZQgbgQmxiPCmlIC8AUa_E3evMYZo7-c3th-yDZFmPPLzL3ss4NCHeyo7r4KYmdpJDJV2YONSt6xa4FOee2-g2_7sWh8eHw3aX7F-enrf3-4QRMEFbelVUzrDOWVlEZ5VjTai8tR6yKs8LjeUbE1goyFCFFoGwWkxHUOq1uP7LDmP_Obs4HU_9PIbl8QgmI4NkStS_2oBI6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418458495</pqid></control><display><type>article</type><title>Quantum walk on a graph of spins: magnetism and entanglement</title><source>Publicly Available Content Database</source><creator>Sellapillay, Kevissen ; Verga, Alberto D</creator><creatorcontrib>Sellapillay, Kevissen ; Verga, Alberto D</creatorcontrib><description>We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one dimensional lattice, to investigate its magnetic and entanglement properties. In the continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation. Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the particle-spin coupling).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2006.14883</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Entanglement ; Magnetic properties ; Magnetism ; Particle spin</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2418458495?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sellapillay, Kevissen</creatorcontrib><creatorcontrib>Verga, Alberto D</creatorcontrib><title>Quantum walk on a graph of spins: magnetism and entanglement</title><title>arXiv.org</title><description>We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one dimensional lattice, to investigate its magnetic and entanglement properties. In the continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation. Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the particle-spin coupling).</description><subject>Entanglement</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Particle spin</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjcFKxDAURYMgOIzzAe4CrlvTl7z2VdzIoI4wIMLshxeb1I5tWptW_XwLurpncThXiKtMpYYQ1Q2PP81XCkrlaWaI9JlYgdZZQgbgQmxiPCmlIC8AUa_E3evMYZo7-c3th-yDZFmPPLzL3ss4NCHeyo7r4KYmdpJDJV2YONSt6xa4FOee2-g2_7sWh8eHw3aX7F-enrf3-4QRMEFbelVUzrDOWVlEZ5VjTai8tR6yKs8LjeUbE1goyFCFFoGwWkxHUOq1uP7LDmP_Obs4HU_9PIbl8QgmI4NkStS_2oBI6g</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Sellapillay, Kevissen</creator><creator>Verga, Alberto D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200626</creationdate><title>Quantum walk on a graph of spins: magnetism and entanglement</title><author>Sellapillay, Kevissen ; Verga, Alberto D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-5b9f07de4a36a0b55eb0ea3850fbbf21d667359ca82b27848d5b5285d55ee8293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Entanglement</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Particle spin</topic><toplevel>online_resources</toplevel><creatorcontrib>Sellapillay, Kevissen</creatorcontrib><creatorcontrib>Verga, Alberto D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sellapillay, Kevissen</au><au>Verga, Alberto D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum walk on a graph of spins: magnetism and entanglement</atitle><jtitle>arXiv.org</jtitle><date>2020-06-26</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one dimensional lattice, to investigate its magnetic and entanglement properties. In the continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation. Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the particle-spin coupling).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2006.14883</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2418458495
source Publicly Available Content Database
subjects Entanglement
Magnetic properties
Magnetism
Particle spin
title Quantum walk on a graph of spins: magnetism and entanglement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20walk%20on%20a%20graph%20of%20spins:%20magnetism%20and%20entanglement&rft.jtitle=arXiv.org&rft.au=Sellapillay,%20Kevissen&rft.date=2020-06-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2006.14883&rft_dat=%3Cproquest%3E2418458495%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-5b9f07de4a36a0b55eb0ea3850fbbf21d667359ca82b27848d5b5285d55ee8293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2418458495&rft_id=info:pmid/&rfr_iscdi=true