Loading…
Can We Mitigate Backdoor Attack Using Adversarial Detection Methods?
Deep Neural Networks are well known to be vulnerable to adversarial attacks and backdoor attacks, where minor modifications on the input are able to mislead the models to give wrong results. Although defenses against adversarial attacks have been widely studied, investigation on mitigating backdoor...
Saved in:
Published in: | arXiv.org 2022-07 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep Neural Networks are well known to be vulnerable to adversarial attacks and backdoor attacks, where minor modifications on the input are able to mislead the models to give wrong results. Although defenses against adversarial attacks have been widely studied, investigation on mitigating backdoor attacks is still at an early stage. It is unknown whether there are any connections and common characteristics between the defenses against these two attacks. We conduct comprehensive studies on the connections between adversarial examples and backdoor examples of Deep Neural Networks to seek to answer the question: can we detect backdoor using adversarial detection methods. Our insights are based on the observation that both adversarial examples and backdoor examples have anomalies during the inference process, highly distinguishable from benign samples. As a result, we revise four existing adversarial defense methods for detecting backdoor examples. Extensive evaluations indicate that these approaches provide reliable protection against backdoor attacks, with a higher accuracy than detecting adversarial examples. These solutions also reveal the relations of adversarial examples, backdoor examples and normal samples in model sensitivity, activation space and feature space. This is able to enhance our understanding about the inherent features of these two attacks and the defense opportunities. |
---|---|
ISSN: | 2331-8422 |