Loading…

Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS

AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of aerospace engineering 2020-09, Vol.33 (5)
Main Authors: Gou, Bin, de Ruiter, Anton H. J, Cheng, Yong-mei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083
cites cdi_FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083
container_end_page
container_issue 5
container_start_page
container_title Journal of aerospace engineering
container_volume 33
creator Gou, Bin
de Ruiter, Anton H. J
Cheng, Yong-mei
description AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affects the entire integrated navigation system’s accuracy. This paper proposes a novel integrated INS and CNS navigation system that includes two filtering processes. The angular velocity derived from the star centroid positioning information provides measurements in the first filter. To correct the star centroid positioning error, the gyroscope’s real-time output is used to fuse this measurement via the nonlinear least-square method. In the second filter, the CNS attitude measurement is calculated from the corrected star centroid positioning information. Then, the INS and CNS measurements are combined via a standard Kalman filter to estimate the spacecraft attitude. Comparing the INS/CNS integrated system with the traditional star centroid positioning method, the simulation results illustrate that the proposed method markedly reduces star centroid positioning error and has strong universal applicability to provide similar high-accuracy spacecraft attitude estimations regardless of star sensor specifications.
doi_str_mv 10.1061/(ASCE)AS.1943-5525.0001156
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418527194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418527194</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKf_Q9CLHjrzs8m8lTLnYGxC9RzSNpUObWqSHvbfL2VTT17eg5fv573wAeAWoxlGKX68z4p88ZAVMzxnNOGc8BlCCGOenoHJ7-wcTJCc0wRTgi_Blfe7mGHpnExAUQTtYG664Gxbw1fr29Daru0-4MI5G5-sc6YaZzBra1PDcg-Xe2d9ZXsDt0PohwDbDq42BdRdDfNNcQ0uGv3pzc2pT8H78-Itf0nW2-Uqz9aJplSERFLEuGENoYITk5ZaU9KUklaUGsFYLalOjSmF1pyKmiFRSqnLiBhUVgxJOgV3x729s9-D8UHt7OC6eFIRhiUnYjQwBU_HVBU_7Z1pVO_aL-32CiM1SlRqlBiLGuNqFKZOEiOcHmHtK_O3_of8HzwANqB0-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418527194</pqid></control><display><type>article</type><title>Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS</title><source>American Society Of Civil Engineers ASCE Journals</source><creator>Gou, Bin ; de Ruiter, Anton H. J ; Cheng, Yong-mei</creator><creatorcontrib>Gou, Bin ; de Ruiter, Anton H. J ; Cheng, Yong-mei</creatorcontrib><description>AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affects the entire integrated navigation system’s accuracy. This paper proposes a novel integrated INS and CNS navigation system that includes two filtering processes. The angular velocity derived from the star centroid positioning information provides measurements in the first filter. To correct the star centroid positioning error, the gyroscope’s real-time output is used to fuse this measurement via the nonlinear least-square method. In the second filter, the CNS attitude measurement is calculated from the corrected star centroid positioning information. Then, the INS and CNS measurements are combined via a standard Kalman filter to estimate the spacecraft attitude. Comparing the INS/CNS integrated system with the traditional star centroid positioning method, the simulation results illustrate that the proposed method markedly reduces star centroid positioning error and has strong universal applicability to provide similar high-accuracy spacecraft attitude estimations regardless of star sensor specifications.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0001156</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Angular velocity ; Celestial navigation ; Centroids ; Error analysis ; Error correction ; Inertial navigation ; Kalman filters ; Mathematical analysis ; Navigation systems ; Spacecraft ; Technical Papers</subject><ispartof>Journal of aerospace engineering, 2020-09, Vol.33 (5)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083</citedby><cites>FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083</cites><orcidid>0000-0002-6748-6346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0001156$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0001156$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,3238,10048,27903,27904,75937,75945</link.rule.ids></links><search><creatorcontrib>Gou, Bin</creatorcontrib><creatorcontrib>de Ruiter, Anton H. J</creatorcontrib><creatorcontrib>Cheng, Yong-mei</creatorcontrib><title>Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS</title><title>Journal of aerospace engineering</title><description>AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affects the entire integrated navigation system’s accuracy. This paper proposes a novel integrated INS and CNS navigation system that includes two filtering processes. The angular velocity derived from the star centroid positioning information provides measurements in the first filter. To correct the star centroid positioning error, the gyroscope’s real-time output is used to fuse this measurement via the nonlinear least-square method. In the second filter, the CNS attitude measurement is calculated from the corrected star centroid positioning information. Then, the INS and CNS measurements are combined via a standard Kalman filter to estimate the spacecraft attitude. Comparing the INS/CNS integrated system with the traditional star centroid positioning method, the simulation results illustrate that the proposed method markedly reduces star centroid positioning error and has strong universal applicability to provide similar high-accuracy spacecraft attitude estimations regardless of star sensor specifications.</description><subject>Angular velocity</subject><subject>Celestial navigation</subject><subject>Centroids</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Inertial navigation</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Navigation systems</subject><subject>Spacecraft</subject><subject>Technical Papers</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKf_Q9CLHjrzs8m8lTLnYGxC9RzSNpUObWqSHvbfL2VTT17eg5fv573wAeAWoxlGKX68z4p88ZAVMzxnNOGc8BlCCGOenoHJ7-wcTJCc0wRTgi_Blfe7mGHpnExAUQTtYG664Gxbw1fr29Daru0-4MI5G5-sc6YaZzBra1PDcg-Xe2d9ZXsDt0PohwDbDq42BdRdDfNNcQ0uGv3pzc2pT8H78-Itf0nW2-Uqz9aJplSERFLEuGENoYITk5ZaU9KUklaUGsFYLalOjSmF1pyKmiFRSqnLiBhUVgxJOgV3x729s9-D8UHt7OC6eFIRhiUnYjQwBU_HVBU_7Z1pVO_aL-32CiM1SlRqlBiLGuNqFKZOEiOcHmHtK_O3_of8HzwANqB0-A</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Gou, Bin</creator><creator>de Ruiter, Anton H. J</creator><creator>Cheng, Yong-mei</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6748-6346</orcidid></search><sort><creationdate>20200901</creationdate><title>Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS</title><author>Gou, Bin ; de Ruiter, Anton H. J ; Cheng, Yong-mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular velocity</topic><topic>Celestial navigation</topic><topic>Centroids</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Inertial navigation</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Navigation systems</topic><topic>Spacecraft</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Bin</creatorcontrib><creatorcontrib>de Ruiter, Anton H. J</creatorcontrib><creatorcontrib>Cheng, Yong-mei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Bin</au><au>de Ruiter, Anton H. J</au><au>Cheng, Yong-mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>33</volume><issue>5</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affects the entire integrated navigation system’s accuracy. This paper proposes a novel integrated INS and CNS navigation system that includes two filtering processes. The angular velocity derived from the star centroid positioning information provides measurements in the first filter. To correct the star centroid positioning error, the gyroscope’s real-time output is used to fuse this measurement via the nonlinear least-square method. In the second filter, the CNS attitude measurement is calculated from the corrected star centroid positioning information. Then, the INS and CNS measurements are combined via a standard Kalman filter to estimate the spacecraft attitude. Comparing the INS/CNS integrated system with the traditional star centroid positioning method, the simulation results illustrate that the proposed method markedly reduces star centroid positioning error and has strong universal applicability to provide similar high-accuracy spacecraft attitude estimations regardless of star sensor specifications.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0001156</doi><orcidid>https://orcid.org/0000-0002-6748-6346</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-1321
ispartof Journal of aerospace engineering, 2020-09, Vol.33 (5)
issn 0893-1321
1943-5525
language eng
recordid cdi_proquest_journals_2418527194
source American Society Of Civil Engineers ASCE Journals
subjects Angular velocity
Celestial navigation
Centroids
Error analysis
Error correction
Inertial navigation
Kalman filters
Mathematical analysis
Navigation systems
Spacecraft
Technical Papers
title Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Star%20Centroid%20Positioning%20Error%20Correction%20Aided%20by%20Gyroscope%20Output%20in%20INS%20and%20CNS&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Gou,%20Bin&rft.date=2020-09-01&rft.volume=33&rft.issue=5&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0001156&rft_dat=%3Cproquest_cross%3E2418527194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2418527194&rft_id=info:pmid/&rfr_iscdi=true