Loading…
Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS
AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affe...
Saved in:
Published in: | Journal of aerospace engineering 2020-09, Vol.33 (5) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083 |
---|---|
cites | cdi_FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Journal of aerospace engineering |
container_volume | 33 |
creator | Gou, Bin de Ruiter, Anton H. J Cheng, Yong-mei |
description | AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affects the entire integrated navigation system’s accuracy. This paper proposes a novel integrated INS and CNS navigation system that includes two filtering processes. The angular velocity derived from the star centroid positioning information provides measurements in the first filter. To correct the star centroid positioning error, the gyroscope’s real-time output is used to fuse this measurement via the nonlinear least-square method. In the second filter, the CNS attitude measurement is calculated from the corrected star centroid positioning information. Then, the INS and CNS measurements are combined via a standard Kalman filter to estimate the spacecraft attitude. Comparing the INS/CNS integrated system with the traditional star centroid positioning method, the simulation results illustrate that the proposed method markedly reduces star centroid positioning error and has strong universal applicability to provide similar high-accuracy spacecraft attitude estimations regardless of star sensor specifications. |
doi_str_mv | 10.1061/(ASCE)AS.1943-5525.0001156 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418527194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418527194</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKf_Q9CLHjrzs8m8lTLnYGxC9RzSNpUObWqSHvbfL2VTT17eg5fv573wAeAWoxlGKX68z4p88ZAVMzxnNOGc8BlCCGOenoHJ7-wcTJCc0wRTgi_Blfe7mGHpnExAUQTtYG664Gxbw1fr29Daru0-4MI5G5-sc6YaZzBra1PDcg-Xe2d9ZXsDt0PohwDbDq42BdRdDfNNcQ0uGv3pzc2pT8H78-Itf0nW2-Uqz9aJplSERFLEuGENoYITk5ZaU9KUklaUGsFYLalOjSmF1pyKmiFRSqnLiBhUVgxJOgV3x729s9-D8UHt7OC6eFIRhiUnYjQwBU_HVBU_7Z1pVO_aL-32CiM1SlRqlBiLGuNqFKZOEiOcHmHtK_O3_of8HzwANqB0-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418527194</pqid></control><display><type>article</type><title>Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS</title><source>American Society Of Civil Engineers ASCE Journals</source><creator>Gou, Bin ; de Ruiter, Anton H. J ; Cheng, Yong-mei</creator><creatorcontrib>Gou, Bin ; de Ruiter, Anton H. J ; Cheng, Yong-mei</creatorcontrib><description>AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affects the entire integrated navigation system’s accuracy. This paper proposes a novel integrated INS and CNS navigation system that includes two filtering processes. The angular velocity derived from the star centroid positioning information provides measurements in the first filter. To correct the star centroid positioning error, the gyroscope’s real-time output is used to fuse this measurement via the nonlinear least-square method. In the second filter, the CNS attitude measurement is calculated from the corrected star centroid positioning information. Then, the INS and CNS measurements are combined via a standard Kalman filter to estimate the spacecraft attitude. Comparing the INS/CNS integrated system with the traditional star centroid positioning method, the simulation results illustrate that the proposed method markedly reduces star centroid positioning error and has strong universal applicability to provide similar high-accuracy spacecraft attitude estimations regardless of star sensor specifications.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0001156</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Angular velocity ; Celestial navigation ; Centroids ; Error analysis ; Error correction ; Inertial navigation ; Kalman filters ; Mathematical analysis ; Navigation systems ; Spacecraft ; Technical Papers</subject><ispartof>Journal of aerospace engineering, 2020-09, Vol.33 (5)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083</citedby><cites>FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083</cites><orcidid>0000-0002-6748-6346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0001156$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0001156$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,3238,10048,27903,27904,75937,75945</link.rule.ids></links><search><creatorcontrib>Gou, Bin</creatorcontrib><creatorcontrib>de Ruiter, Anton H. J</creatorcontrib><creatorcontrib>Cheng, Yong-mei</creatorcontrib><title>Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS</title><title>Journal of aerospace engineering</title><description>AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affects the entire integrated navigation system’s accuracy. This paper proposes a novel integrated INS and CNS navigation system that includes two filtering processes. The angular velocity derived from the star centroid positioning information provides measurements in the first filter. To correct the star centroid positioning error, the gyroscope’s real-time output is used to fuse this measurement via the nonlinear least-square method. In the second filter, the CNS attitude measurement is calculated from the corrected star centroid positioning information. Then, the INS and CNS measurements are combined via a standard Kalman filter to estimate the spacecraft attitude. Comparing the INS/CNS integrated system with the traditional star centroid positioning method, the simulation results illustrate that the proposed method markedly reduces star centroid positioning error and has strong universal applicability to provide similar high-accuracy spacecraft attitude estimations regardless of star sensor specifications.</description><subject>Angular velocity</subject><subject>Celestial navigation</subject><subject>Centroids</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Inertial navigation</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Navigation systems</subject><subject>Spacecraft</subject><subject>Technical Papers</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKf_Q9CLHjrzs8m8lTLnYGxC9RzSNpUObWqSHvbfL2VTT17eg5fv573wAeAWoxlGKX68z4p88ZAVMzxnNOGc8BlCCGOenoHJ7-wcTJCc0wRTgi_Blfe7mGHpnExAUQTtYG664Gxbw1fr29Daru0-4MI5G5-sc6YaZzBra1PDcg-Xe2d9ZXsDt0PohwDbDq42BdRdDfNNcQ0uGv3pzc2pT8H78-Itf0nW2-Uqz9aJplSERFLEuGENoYITk5ZaU9KUklaUGsFYLalOjSmF1pyKmiFRSqnLiBhUVgxJOgV3x729s9-D8UHt7OC6eFIRhiUnYjQwBU_HVBU_7Z1pVO_aL-32CiM1SlRqlBiLGuNqFKZOEiOcHmHtK_O3_of8HzwANqB0-A</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Gou, Bin</creator><creator>de Ruiter, Anton H. J</creator><creator>Cheng, Yong-mei</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6748-6346</orcidid></search><sort><creationdate>20200901</creationdate><title>Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS</title><author>Gou, Bin ; de Ruiter, Anton H. J ; Cheng, Yong-mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular velocity</topic><topic>Celestial navigation</topic><topic>Centroids</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Inertial navigation</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Navigation systems</topic><topic>Spacecraft</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Bin</creatorcontrib><creatorcontrib>de Ruiter, Anton H. J</creatorcontrib><creatorcontrib>Cheng, Yong-mei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Bin</au><au>de Ruiter, Anton H. J</au><au>Cheng, Yong-mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>33</volume><issue>5</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractIn a traditional integrated inertial navigation system (INS) and celestial navigation system (CNS) setup, measurements from both systems are only fused at the data output phase. Navigation star centroid positioning error persists in the calculated celestial measurement, which inevitably affects the entire integrated navigation system’s accuracy. This paper proposes a novel integrated INS and CNS navigation system that includes two filtering processes. The angular velocity derived from the star centroid positioning information provides measurements in the first filter. To correct the star centroid positioning error, the gyroscope’s real-time output is used to fuse this measurement via the nonlinear least-square method. In the second filter, the CNS attitude measurement is calculated from the corrected star centroid positioning information. Then, the INS and CNS measurements are combined via a standard Kalman filter to estimate the spacecraft attitude. Comparing the INS/CNS integrated system with the traditional star centroid positioning method, the simulation results illustrate that the proposed method markedly reduces star centroid positioning error and has strong universal applicability to provide similar high-accuracy spacecraft attitude estimations regardless of star sensor specifications.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0001156</doi><orcidid>https://orcid.org/0000-0002-6748-6346</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-1321 |
ispartof | Journal of aerospace engineering, 2020-09, Vol.33 (5) |
issn | 0893-1321 1943-5525 |
language | eng |
recordid | cdi_proquest_journals_2418527194 |
source | American Society Of Civil Engineers ASCE Journals |
subjects | Angular velocity Celestial navigation Centroids Error analysis Error correction Inertial navigation Kalman filters Mathematical analysis Navigation systems Spacecraft Technical Papers |
title | Star Centroid Positioning Error Correction Aided by Gyroscope Output in INS and CNS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Star%20Centroid%20Positioning%20Error%20Correction%20Aided%20by%20Gyroscope%20Output%20in%20INS%20and%20CNS&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Gou,%20Bin&rft.date=2020-09-01&rft.volume=33&rft.issue=5&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0001156&rft_dat=%3Cproquest_cross%3E2418527194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-83045e4f23752e6baa32fb83c33e744d83a6eeb7aa537d407b88ab45ee0bc4083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2418527194&rft_id=info:pmid/&rfr_iscdi=true |