Loading…
SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome
SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address t...
Saved in:
Published in: | bioRxiv 2020-10 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-b2150-42bddc833e44cb8bffff97c8e7ecb646c66b7b7372bbd12085500736a96fbe4b3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | bioRxiv |
container_volume | |
creator | Zimmerman, Maxwell I Porter, Justin R Ward, Michael D Singh, Sukrit Vithani, Neha Meller, Artur Mallimadugula, Upasana L Kuhn, Catherine E Borowsky, Jonathan H Wiewiora, Rafal P Hurley, Matthew F D Harbison, Aoife M Fogarty, Carl A Coffland, Joseph E Fadda, Elisa Voelz, Vincent A Chodera, John D Bowman, Gregory R |
description | SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of 'cryptic' epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas. |
doi_str_mv | 10.1101/2020.06.27.175430 |
format | article |
fullrecord | <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_proquest_journals_2418897793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421462620</sourcerecordid><originalsourceid>FETCH-LOGICAL-b2150-42bddc833e44cb8bffff97c8e7ecb646c66b7b7372bbd12085500736a96fbe4b3</originalsourceid><addsrcrecordid>eNpd0E1v2zAMBmBh6LAWaX_ALoOAXXpxJlGyZB8Dox8DAjRItl0NSWZWJbblSXbR_vsmaLcO5YU8PCDBl5DPnM05Z_wbMGBzpuag51znUrAP5AxUCVkBLD_5bz4lFyntGGNQKi60_EROBSihSyXOyG6zWG-yKvzKgG58N7Vm9KFP9CbQq0eTnGmRjoFWZhiniHQz-D3SuwF73_-mpm_oGh_QtLSKT8PoHV0Ft8cx0YWLISU63iNdxTBi6PCcfNyaNuHFa5-Rn9dXP6rbbHl3871aLDMLPGeZBNs0rhACpXS2sNtDldoVqNFZJZVTymqrhQZrGw6syHPGtFCmVFuL0ooZuXzZa32Ij_6hHqLvTHyqj4nVTNWg65fE3ugQw58J01h3PjlsW9NjmFINErhUoOBIv76juzDF_vDIQfGiKLUuxUF9eVWT7bD5d_pv4OIZjLqAGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418897793</pqid></control><display><type>article</type><title>SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome</title><source>Coronavirus Research Database</source><creator>Zimmerman, Maxwell I ; Porter, Justin R ; Ward, Michael D ; Singh, Sukrit ; Vithani, Neha ; Meller, Artur ; Mallimadugula, Upasana L ; Kuhn, Catherine E ; Borowsky, Jonathan H ; Wiewiora, Rafal P ; Hurley, Matthew F D ; Harbison, Aoife M ; Fogarty, Carl A ; Coffland, Joseph E ; Fadda, Elisa ; Voelz, Vincent A ; Chodera, John D ; Bowman, Gregory R</creator><creatorcontrib>Zimmerman, Maxwell I ; Porter, Justin R ; Ward, Michael D ; Singh, Sukrit ; Vithani, Neha ; Meller, Artur ; Mallimadugula, Upasana L ; Kuhn, Catherine E ; Borowsky, Jonathan H ; Wiewiora, Rafal P ; Hurley, Matthew F D ; Harbison, Aoife M ; Fogarty, Carl A ; Coffland, Joseph E ; Fadda, Elisa ; Voelz, Vincent A ; Chodera, John D ; Bowman, Gregory R</creatorcontrib><description>SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of 'cryptic' epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.</description><edition>1.3</edition><identifier>ISSN: 2692-8205</identifier><identifier>EISSN: 2692-8205</identifier><identifier>DOI: 10.1101/2020.06.27.175430</identifier><identifier>PMID: 32637963</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Antiviral agents ; Biophysics ; Coronaviruses ; COVID-19 ; Immune response ; Pandemics ; Proteomes ; Severe acute respiratory syndrome coronavirus 2</subject><ispartof>bioRxiv, 2020-10</ispartof><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020, Posted by Cold Spring Harbor Laboratory</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-b2150-42bddc833e44cb8bffff97c8e7ecb646c66b7b7372bbd12085500736a96fbe4b3</cites><orcidid>0000-0003-0542-119X ; 0000-0002-8961-7183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2418897793?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,780,784,885,27924,38515,43894</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2418897793?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest$$Hfree_for_read</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32637963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmerman, Maxwell I</creatorcontrib><creatorcontrib>Porter, Justin R</creatorcontrib><creatorcontrib>Ward, Michael D</creatorcontrib><creatorcontrib>Singh, Sukrit</creatorcontrib><creatorcontrib>Vithani, Neha</creatorcontrib><creatorcontrib>Meller, Artur</creatorcontrib><creatorcontrib>Mallimadugula, Upasana L</creatorcontrib><creatorcontrib>Kuhn, Catherine E</creatorcontrib><creatorcontrib>Borowsky, Jonathan H</creatorcontrib><creatorcontrib>Wiewiora, Rafal P</creatorcontrib><creatorcontrib>Hurley, Matthew F D</creatorcontrib><creatorcontrib>Harbison, Aoife M</creatorcontrib><creatorcontrib>Fogarty, Carl A</creatorcontrib><creatorcontrib>Coffland, Joseph E</creatorcontrib><creatorcontrib>Fadda, Elisa</creatorcontrib><creatorcontrib>Voelz, Vincent A</creatorcontrib><creatorcontrib>Chodera, John D</creatorcontrib><creatorcontrib>Bowman, Gregory R</creatorcontrib><title>SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome</title><title>bioRxiv</title><addtitle>bioRxiv</addtitle><description>SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of 'cryptic' epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.</description><subject>Antiviral agents</subject><subject>Biophysics</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Immune response</subject><subject>Pandemics</subject><subject>Proteomes</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><issn>2692-8205</issn><issn>2692-8205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpd0E1v2zAMBmBh6LAWaX_ALoOAXXpxJlGyZB8Dox8DAjRItl0NSWZWJbblSXbR_vsmaLcO5YU8PCDBl5DPnM05Z_wbMGBzpuag51znUrAP5AxUCVkBLD_5bz4lFyntGGNQKi60_EROBSihSyXOyG6zWG-yKvzKgG58N7Vm9KFP9CbQq0eTnGmRjoFWZhiniHQz-D3SuwF73_-mpm_oGh_QtLSKT8PoHV0Ft8cx0YWLISU63iNdxTBi6PCcfNyaNuHFa5-Rn9dXP6rbbHl3871aLDMLPGeZBNs0rhACpXS2sNtDldoVqNFZJZVTymqrhQZrGw6syHPGtFCmVFuL0ooZuXzZa32Ij_6hHqLvTHyqj4nVTNWg65fE3ugQw58J01h3PjlsW9NjmFINErhUoOBIv76juzDF_vDIQfGiKLUuxUF9eVWT7bD5d_pv4OIZjLqAGA</recordid><startdate>20201007</startdate><enddate>20201007</enddate><creator>Zimmerman, Maxwell I</creator><creator>Porter, Justin R</creator><creator>Ward, Michael D</creator><creator>Singh, Sukrit</creator><creator>Vithani, Neha</creator><creator>Meller, Artur</creator><creator>Mallimadugula, Upasana L</creator><creator>Kuhn, Catherine E</creator><creator>Borowsky, Jonathan H</creator><creator>Wiewiora, Rafal P</creator><creator>Hurley, Matthew F D</creator><creator>Harbison, Aoife M</creator><creator>Fogarty, Carl A</creator><creator>Coffland, Joseph E</creator><creator>Fadda, Elisa</creator><creator>Voelz, Vincent A</creator><creator>Chodera, John D</creator><creator>Bowman, Gregory R</creator><general>Cold Spring Harbor Laboratory Press</general><general>Cold Spring Harbor Laboratory</general><scope>NPM</scope><scope>8FE</scope><scope>8FH</scope><scope>AAFGM</scope><scope>AAMXL</scope><scope>ABOIG</scope><scope>ABUWG</scope><scope>ADZZV</scope><scope>AFKRA</scope><scope>AFLLJ</scope><scope>AFOLM</scope><scope>AGAJT</scope><scope>AQTIP</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQCXX</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>FX.</scope><orcidid>https://orcid.org/0000-0003-0542-119X</orcidid><orcidid>https://orcid.org/0000-0002-8961-7183</orcidid></search><sort><creationdate>20201007</creationdate><title>SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome</title><author>Zimmerman, Maxwell I ; Porter, Justin R ; Ward, Michael D ; Singh, Sukrit ; Vithani, Neha ; Meller, Artur ; Mallimadugula, Upasana L ; Kuhn, Catherine E ; Borowsky, Jonathan H ; Wiewiora, Rafal P ; Hurley, Matthew F D ; Harbison, Aoife M ; Fogarty, Carl A ; Coffland, Joseph E ; Fadda, Elisa ; Voelz, Vincent A ; Chodera, John D ; Bowman, Gregory R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b2150-42bddc833e44cb8bffff97c8e7ecb646c66b7b7372bbd12085500736a96fbe4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiviral agents</topic><topic>Biophysics</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Immune response</topic><topic>Pandemics</topic><topic>Proteomes</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><toplevel>online_resources</toplevel><creatorcontrib>Zimmerman, Maxwell I</creatorcontrib><creatorcontrib>Porter, Justin R</creatorcontrib><creatorcontrib>Ward, Michael D</creatorcontrib><creatorcontrib>Singh, Sukrit</creatorcontrib><creatorcontrib>Vithani, Neha</creatorcontrib><creatorcontrib>Meller, Artur</creatorcontrib><creatorcontrib>Mallimadugula, Upasana L</creatorcontrib><creatorcontrib>Kuhn, Catherine E</creatorcontrib><creatorcontrib>Borowsky, Jonathan H</creatorcontrib><creatorcontrib>Wiewiora, Rafal P</creatorcontrib><creatorcontrib>Hurley, Matthew F D</creatorcontrib><creatorcontrib>Harbison, Aoife M</creatorcontrib><creatorcontrib>Fogarty, Carl A</creatorcontrib><creatorcontrib>Coffland, Joseph E</creatorcontrib><creatorcontrib>Fadda, Elisa</creatorcontrib><creatorcontrib>Voelz, Vincent A</creatorcontrib><creatorcontrib>Chodera, John D</creatorcontrib><creatorcontrib>Bowman, Gregory R</creatorcontrib><collection>PubMed</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>bioRxiv</collection><jtitle>bioRxiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zimmerman, Maxwell I</au><au>Porter, Justin R</au><au>Ward, Michael D</au><au>Singh, Sukrit</au><au>Vithani, Neha</au><au>Meller, Artur</au><au>Mallimadugula, Upasana L</au><au>Kuhn, Catherine E</au><au>Borowsky, Jonathan H</au><au>Wiewiora, Rafal P</au><au>Hurley, Matthew F D</au><au>Harbison, Aoife M</au><au>Fogarty, Carl A</au><au>Coffland, Joseph E</au><au>Fadda, Elisa</au><au>Voelz, Vincent A</au><au>Chodera, John D</au><au>Bowman, Gregory R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome</atitle><jtitle>bioRxiv</jtitle><addtitle>bioRxiv</addtitle><date>2020-10-07</date><risdate>2020</risdate><issn>2692-8205</issn><eissn>2692-8205</eissn><abstract>SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of 'cryptic' epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>32637963</pmid><doi>10.1101/2020.06.27.175430</doi><tpages>28</tpages><edition>1.3</edition><orcidid>https://orcid.org/0000-0003-0542-119X</orcidid><orcidid>https://orcid.org/0000-0002-8961-7183</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2692-8205 |
ispartof | bioRxiv, 2020-10 |
issn | 2692-8205 2692-8205 |
language | eng |
recordid | cdi_proquest_journals_2418897793 |
source | Coronavirus Research Database |
subjects | Antiviral agents Biophysics Coronaviruses COVID-19 Immune response Pandemics Proteomes Severe acute respiratory syndrome coronavirus 2 |
title | SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SARS-CoV-2%20Simulations%20Go%20Exascale%20to%20Capture%20Spike%20Opening%20and%20Reveal%20Cryptic%20Pockets%20Across%20the%20Proteome&rft.jtitle=bioRxiv&rft.au=Zimmerman,%20Maxwell%20I&rft.date=2020-10-07&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101/2020.06.27.175430&rft_dat=%3Cproquest_COVID%3E2421462620%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b2150-42bddc833e44cb8bffff97c8e7ecb646c66b7b7372bbd12085500736a96fbe4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2418897793&rft_id=info:pmid/32637963&rfr_iscdi=true |