Loading…
Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading
A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentag...
Saved in:
Published in: | Fatigue & fracture of engineering materials & structures 2020-08, Vol.43 (8), p.1851-1868 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3 |
container_end_page | 1868 |
container_issue | 8 |
container_start_page | 1851 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 43 |
creator | Li, Luo‐Jin Shang, De‐Guang Li, Dao‐Hang Xue, Long Liu, Xiao‐Dong Yin, Xiang Zhang, Cheng‐Cheng Chen, Bo |
description | A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results. |
doi_str_mv | 10.1111/ffe.13238 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419198345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419198345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh283HJpujlFYFwYuCt5DdTNqU3U2b3a323xutV-cyMDwzAy9CtySfkVRz52BGGGXlGZoQLvKMClWco0kpC5HJovy4RFd9v81zIjhjE2QXYzs2ZvAHwNa0Zg24DRYaXJkeLA4dhv3oD6aBbsAuufUIeOwsRJz2Bm--vGnwsIHYhhbqjel8nQbRdDa0uAnG-m59jS6caXq4-etT9L5avi2espfXx-fFw0tWUyXLjKuasaqonWJOMs4llIoYINIRW5XWFVSUVDhe5YxRqZI0whQ5lcyBoLxmU3R3uruLYT9CP-htGGOXXmrKiSKqZLxI6v6k6hj6PoLTu-hbE4-a5PonRJ1C1L8hJjs_2U_fwPF_qFer5WnjG5CXdFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419198345</pqid></control><display><type>article</type><title>Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Li, Luo‐Jin ; Shang, De‐Guang ; Li, Dao‐Hang ; Xue, Long ; Liu, Xiao‐Dong ; Yin, Xiang ; Zhang, Cheng‐Cheng ; Chen, Bo</creator><creatorcontrib>Li, Luo‐Jin ; Shang, De‐Guang ; Li, Dao‐Hang ; Xue, Long ; Liu, Xiao‐Dong ; Yin, Xiang ; Zhang, Cheng‐Cheng ; Chen, Bo</creatorcontrib><description>A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13238</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Amplitudes ; creep–fatigue damage accumulation ; Cumulative damage ; Damage accumulation ; Damage assessment ; Equivalence ; Fatigue failure ; High temperature ; Life prediction ; multiaxial random loading ; Ni‐based superalloy ; Superalloys ; thermomechanical fatigue</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2020-08, Vol.43 (8), p.1851-1868</ispartof><rights>2020 Wiley Publishing Ltd.</rights><rights>2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3</citedby><cites>FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3</cites><orcidid>0000-0001-6454-1162 ; 0000-0001-7923-5870 ; 0000-0002-1711-4296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Li, Luo‐Jin</creatorcontrib><creatorcontrib>Shang, De‐Guang</creatorcontrib><creatorcontrib>Li, Dao‐Hang</creatorcontrib><creatorcontrib>Xue, Long</creatorcontrib><creatorcontrib>Liu, Xiao‐Dong</creatorcontrib><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Zhang, Cheng‐Cheng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><title>Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading</title><title>Fatigue & fracture of engineering materials & structures</title><description>A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.</description><subject>Amplitudes</subject><subject>creep–fatigue damage accumulation</subject><subject>Cumulative damage</subject><subject>Damage accumulation</subject><subject>Damage assessment</subject><subject>Equivalence</subject><subject>Fatigue failure</subject><subject>High temperature</subject><subject>Life prediction</subject><subject>multiaxial random loading</subject><subject>Ni‐based superalloy</subject><subject>Superalloys</subject><subject>thermomechanical fatigue</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh283HJpujlFYFwYuCt5DdTNqU3U2b3a323xutV-cyMDwzAy9CtySfkVRz52BGGGXlGZoQLvKMClWco0kpC5HJovy4RFd9v81zIjhjE2QXYzs2ZvAHwNa0Zg24DRYaXJkeLA4dhv3oD6aBbsAuufUIeOwsRJz2Bm--vGnwsIHYhhbqjel8nQbRdDa0uAnG-m59jS6caXq4-etT9L5avi2espfXx-fFw0tWUyXLjKuasaqonWJOMs4llIoYINIRW5XWFVSUVDhe5YxRqZI0whQ5lcyBoLxmU3R3uruLYT9CP-htGGOXXmrKiSKqZLxI6v6k6hj6PoLTu-hbE4-a5PonRJ1C1L8hJjs_2U_fwPF_qFer5WnjG5CXdFM</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Li, Luo‐Jin</creator><creator>Shang, De‐Guang</creator><creator>Li, Dao‐Hang</creator><creator>Xue, Long</creator><creator>Liu, Xiao‐Dong</creator><creator>Yin, Xiang</creator><creator>Zhang, Cheng‐Cheng</creator><creator>Chen, Bo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6454-1162</orcidid><orcidid>https://orcid.org/0000-0001-7923-5870</orcidid><orcidid>https://orcid.org/0000-0002-1711-4296</orcidid></search><sort><creationdate>202008</creationdate><title>Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading</title><author>Li, Luo‐Jin ; Shang, De‐Guang ; Li, Dao‐Hang ; Xue, Long ; Liu, Xiao‐Dong ; Yin, Xiang ; Zhang, Cheng‐Cheng ; Chen, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>creep–fatigue damage accumulation</topic><topic>Cumulative damage</topic><topic>Damage accumulation</topic><topic>Damage assessment</topic><topic>Equivalence</topic><topic>Fatigue failure</topic><topic>High temperature</topic><topic>Life prediction</topic><topic>multiaxial random loading</topic><topic>Ni‐based superalloy</topic><topic>Superalloys</topic><topic>thermomechanical fatigue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Luo‐Jin</creatorcontrib><creatorcontrib>Shang, De‐Guang</creatorcontrib><creatorcontrib>Li, Dao‐Hang</creatorcontrib><creatorcontrib>Xue, Long</creatorcontrib><creatorcontrib>Liu, Xiao‐Dong</creatorcontrib><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Zhang, Cheng‐Cheng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Luo‐Jin</au><au>Shang, De‐Guang</au><au>Li, Dao‐Hang</au><au>Xue, Long</au><au>Liu, Xiao‐Dong</au><au>Yin, Xiang</au><au>Zhang, Cheng‐Cheng</au><au>Chen, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2020-08</date><risdate>2020</risdate><volume>43</volume><issue>8</issue><spage>1851</spage><epage>1868</epage><pages>1851-1868</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13238</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6454-1162</orcidid><orcidid>https://orcid.org/0000-0001-7923-5870</orcidid><orcidid>https://orcid.org/0000-0002-1711-4296</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2020-08, Vol.43 (8), p.1851-1868 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2419198345 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Amplitudes creep–fatigue damage accumulation Cumulative damage Damage accumulation Damage assessment Equivalence Fatigue failure High temperature Life prediction multiaxial random loading Ni‐based superalloy Superalloys thermomechanical fatigue |
title | Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulative%20damage%20model%20based%20on%20equivalent%20fatigue%20under%20multiaxial%20thermomechanical%20random%20loading&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Li,%20Luo%E2%80%90Jin&rft.date=2020-08&rft.volume=43&rft.issue=8&rft.spage=1851&rft.epage=1868&rft.pages=1851-1868&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13238&rft_dat=%3Cproquest_cross%3E2419198345%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419198345&rft_id=info:pmid/&rfr_iscdi=true |