Loading…

Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading

A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentag...

Full description

Saved in:
Bibliographic Details
Published in:Fatigue & fracture of engineering materials & structures 2020-08, Vol.43 (8), p.1851-1868
Main Authors: Li, Luo‐Jin, Shang, De‐Guang, Li, Dao‐Hang, Xue, Long, Liu, Xiao‐Dong, Yin, Xiang, Zhang, Cheng‐Cheng, Chen, Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3
cites cdi_FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3
container_end_page 1868
container_issue 8
container_start_page 1851
container_title Fatigue & fracture of engineering materials & structures
container_volume 43
creator Li, Luo‐Jin
Shang, De‐Guang
Li, Dao‐Hang
Xue, Long
Liu, Xiao‐Dong
Yin, Xiang
Zhang, Cheng‐Cheng
Chen, Bo
description A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.
doi_str_mv 10.1111/ffe.13238
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419198345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419198345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh283HJpujlFYFwYuCt5DdTNqU3U2b3a323xutV-cyMDwzAy9CtySfkVRz52BGGGXlGZoQLvKMClWco0kpC5HJovy4RFd9v81zIjhjE2QXYzs2ZvAHwNa0Zg24DRYaXJkeLA4dhv3oD6aBbsAuufUIeOwsRJz2Bm--vGnwsIHYhhbqjel8nQbRdDa0uAnG-m59jS6caXq4-etT9L5avi2espfXx-fFw0tWUyXLjKuasaqonWJOMs4llIoYINIRW5XWFVSUVDhe5YxRqZI0whQ5lcyBoLxmU3R3uruLYT9CP-htGGOXXmrKiSKqZLxI6v6k6hj6PoLTu-hbE4-a5PonRJ1C1L8hJjs_2U_fwPF_qFer5WnjG5CXdFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419198345</pqid></control><display><type>article</type><title>Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Luo‐Jin ; Shang, De‐Guang ; Li, Dao‐Hang ; Xue, Long ; Liu, Xiao‐Dong ; Yin, Xiang ; Zhang, Cheng‐Cheng ; Chen, Bo</creator><creatorcontrib>Li, Luo‐Jin ; Shang, De‐Guang ; Li, Dao‐Hang ; Xue, Long ; Liu, Xiao‐Dong ; Yin, Xiang ; Zhang, Cheng‐Cheng ; Chen, Bo</creatorcontrib><description>A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13238</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Amplitudes ; creep–fatigue damage accumulation ; Cumulative damage ; Damage accumulation ; Damage assessment ; Equivalence ; Fatigue failure ; High temperature ; Life prediction ; multiaxial random loading ; Ni‐based superalloy ; Superalloys ; thermomechanical fatigue</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2020-08, Vol.43 (8), p.1851-1868</ispartof><rights>2020 Wiley Publishing Ltd.</rights><rights>2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3</citedby><cites>FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3</cites><orcidid>0000-0001-6454-1162 ; 0000-0001-7923-5870 ; 0000-0002-1711-4296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Li, Luo‐Jin</creatorcontrib><creatorcontrib>Shang, De‐Guang</creatorcontrib><creatorcontrib>Li, Dao‐Hang</creatorcontrib><creatorcontrib>Xue, Long</creatorcontrib><creatorcontrib>Liu, Xiao‐Dong</creatorcontrib><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Zhang, Cheng‐Cheng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><title>Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.</description><subject>Amplitudes</subject><subject>creep–fatigue damage accumulation</subject><subject>Cumulative damage</subject><subject>Damage accumulation</subject><subject>Damage assessment</subject><subject>Equivalence</subject><subject>Fatigue failure</subject><subject>High temperature</subject><subject>Life prediction</subject><subject>multiaxial random loading</subject><subject>Ni‐based superalloy</subject><subject>Superalloys</subject><subject>thermomechanical fatigue</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh283HJpujlFYFwYuCt5DdTNqU3U2b3a323xutV-cyMDwzAy9CtySfkVRz52BGGGXlGZoQLvKMClWco0kpC5HJovy4RFd9v81zIjhjE2QXYzs2ZvAHwNa0Zg24DRYaXJkeLA4dhv3oD6aBbsAuufUIeOwsRJz2Bm--vGnwsIHYhhbqjel8nQbRdDa0uAnG-m59jS6caXq4-etT9L5avi2espfXx-fFw0tWUyXLjKuasaqonWJOMs4llIoYINIRW5XWFVSUVDhe5YxRqZI0whQ5lcyBoLxmU3R3uruLYT9CP-htGGOXXmrKiSKqZLxI6v6k6hj6PoLTu-hbE4-a5PonRJ1C1L8hJjs_2U_fwPF_qFer5WnjG5CXdFM</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Li, Luo‐Jin</creator><creator>Shang, De‐Guang</creator><creator>Li, Dao‐Hang</creator><creator>Xue, Long</creator><creator>Liu, Xiao‐Dong</creator><creator>Yin, Xiang</creator><creator>Zhang, Cheng‐Cheng</creator><creator>Chen, Bo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6454-1162</orcidid><orcidid>https://orcid.org/0000-0001-7923-5870</orcidid><orcidid>https://orcid.org/0000-0002-1711-4296</orcidid></search><sort><creationdate>202008</creationdate><title>Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading</title><author>Li, Luo‐Jin ; Shang, De‐Guang ; Li, Dao‐Hang ; Xue, Long ; Liu, Xiao‐Dong ; Yin, Xiang ; Zhang, Cheng‐Cheng ; Chen, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>creep–fatigue damage accumulation</topic><topic>Cumulative damage</topic><topic>Damage accumulation</topic><topic>Damage assessment</topic><topic>Equivalence</topic><topic>Fatigue failure</topic><topic>High temperature</topic><topic>Life prediction</topic><topic>multiaxial random loading</topic><topic>Ni‐based superalloy</topic><topic>Superalloys</topic><topic>thermomechanical fatigue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Luo‐Jin</creatorcontrib><creatorcontrib>Shang, De‐Guang</creatorcontrib><creatorcontrib>Li, Dao‐Hang</creatorcontrib><creatorcontrib>Xue, Long</creatorcontrib><creatorcontrib>Liu, Xiao‐Dong</creatorcontrib><creatorcontrib>Yin, Xiang</creatorcontrib><creatorcontrib>Zhang, Cheng‐Cheng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Luo‐Jin</au><au>Shang, De‐Guang</au><au>Li, Dao‐Hang</au><au>Xue, Long</au><au>Liu, Xiao‐Dong</au><au>Yin, Xiang</au><au>Zhang, Cheng‐Cheng</au><au>Chen, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2020-08</date><risdate>2020</risdate><volume>43</volume><issue>8</issue><spage>1851</spage><epage>1868</epage><pages>1851-1868</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13238</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6454-1162</orcidid><orcidid>https://orcid.org/0000-0001-7923-5870</orcidid><orcidid>https://orcid.org/0000-0002-1711-4296</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2020-08, Vol.43 (8), p.1851-1868
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2419198345
source Wiley-Blackwell Read & Publish Collection
subjects Amplitudes
creep–fatigue damage accumulation
Cumulative damage
Damage accumulation
Damage assessment
Equivalence
Fatigue failure
High temperature
Life prediction
multiaxial random loading
Ni‐based superalloy
Superalloys
thermomechanical fatigue
title Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulative%20damage%20model%20based%20on%20equivalent%20fatigue%20under%20multiaxial%20thermomechanical%20random%20loading&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Li,%20Luo%E2%80%90Jin&rft.date=2020-08&rft.volume=43&rft.issue=8&rft.spage=1851&rft.epage=1868&rft.pages=1851-1868&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13238&rft_dat=%3Cproquest_cross%3E2419198345%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2978-49c33b5cf93f73447e891ae17f1db8df526826f4b033279b5ca6a50273fe624c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419198345&rft_id=info:pmid/&rfr_iscdi=true