Loading…
A multi-aspect approach to ontology matching based on Bayesian cluster ensembles
With the progressive increase in the number of existing ontologies, ontology matching became a challenging task. Ontology matching is a crucial step in the ontology integration process and its goal is to find correspondent elements in heterogeneous ontologies. A trend of clustering-based solutions f...
Saved in:
Published in: | Journal of intelligent information systems 2020-08, Vol.55 (1), p.95-118 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the progressive increase in the number of existing ontologies, ontology matching became a challenging task. Ontology matching is a crucial step in the ontology integration process and its goal is to find correspondent elements in heterogeneous ontologies. A trend of clustering-based solutions for ontology matching has evolved, based on a divide-and-conquer strategy, which partitions ontologies, clusters similar partitions and restricts the matching to ontology elements of similar partitions. Nevertheless, most of these solutions considered solely the terminological aspect, ignoring other ontology aspects that can contribute to the final matching results. In this work, we developed a novel solution for ontology matching based on a consensus clustering of multiple aspects of ontology partitons. We partitioned the ontologies applying Community Detection techniques and applied Bayesian Cluster Ensembles (BCE) to find a consensus clustering among the terminological, topological and extensional aspects of ontology partitions. The matching results of our experimental study indicated that a BCE-based solution with three clusters best captured the contributions of the aspects, in comparison to other consensual solutions. The results corroborated the benefits of the synergy between the ontology aspects to the ontology alignment. We also verified that the BCE-based solution for three clusters yielded higher matching scores than other state-of-the-art solutions. Besides, our proposed methods structurize a configurable framework, which allows adding other ontology aspects and also other techniques. |
---|---|
ISSN: | 0925-9902 1573-7675 |
DOI: | 10.1007/s10844-019-00583-8 |