Loading…
Optimal Transport losses and Sinkhorn algorithm with general convex regularization
We introduce a new class of convex-regularized Optimal Transport losses, which generalizes the classical Entropy-regularization of Optimal Transport and Sinkhorn divergences, and propose a generalized Sinkhorn algorithm. Our framework unifies many regularizations and numerical methods previously app...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Simone Di Marino Gerolin, Augusto |
description | We introduce a new class of convex-regularized Optimal Transport losses, which generalizes the classical Entropy-regularization of Optimal Transport and Sinkhorn divergences, and propose a generalized Sinkhorn algorithm. Our framework unifies many regularizations and numerical methods previously appeared in the literature. We show the existence of the maximizer for the dual problem, complementary slackness conditions, providing a complete characterization of solutions for such class of variational problems. As a consequence, we study structural properties of these losses, including continuity, differentiability and provide explicit formulas for the its gradient. Finally, we provide theoretical guarantees of convergences and stability of the generalized Sinkhorn algorithm, even in the continuous setting. The techniques developed here are directly applicable also to study Wasserstein barycenters or, more generally, multi-marginal problems. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2419780734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419780734</sourcerecordid><originalsourceid>FETCH-proquest_journals_24197807343</originalsourceid><addsrcrecordid>eNqNi7EKwjAURYMgWLT_EHAupElr6yyKm6DdJWhsU9OX-l6q4tfbwQ9wuWc4505YJJVKkzKTcsZiolYIIVeFzHMVseOhD7bTjleogXqPgTtPZIhruPKThXvjEbh2tUcbmo6_xuW1AYPj6eLhad4cTT04jfajg_WwYNObdmTiH-dsudtWm33So38MhsK59QPCqM4yS9dFKQqVqf-qL4MkQPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419780734</pqid></control><display><type>article</type><title>Optimal Transport losses and Sinkhorn algorithm with general convex regularization</title><source>Publicly Available Content (ProQuest)</source><creator>Simone Di Marino ; Gerolin, Augusto</creator><creatorcontrib>Simone Di Marino ; Gerolin, Augusto</creatorcontrib><description>We introduce a new class of convex-regularized Optimal Transport losses, which generalizes the classical Entropy-regularization of Optimal Transport and Sinkhorn divergences, and propose a generalized Sinkhorn algorithm. Our framework unifies many regularizations and numerical methods previously appeared in the literature. We show the existence of the maximizer for the dual problem, complementary slackness conditions, providing a complete characterization of solutions for such class of variational problems. As a consequence, we study structural properties of these losses, including continuity, differentiability and provide explicit formulas for the its gradient. Finally, we provide theoretical guarantees of convergences and stability of the generalized Sinkhorn algorithm, even in the continuous setting. The techniques developed here are directly applicable also to study Wasserstein barycenters or, more generally, multi-marginal problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Numerical methods ; Regularization</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2419780734?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Simone Di Marino</creatorcontrib><creatorcontrib>Gerolin, Augusto</creatorcontrib><title>Optimal Transport losses and Sinkhorn algorithm with general convex regularization</title><title>arXiv.org</title><description>We introduce a new class of convex-regularized Optimal Transport losses, which generalizes the classical Entropy-regularization of Optimal Transport and Sinkhorn divergences, and propose a generalized Sinkhorn algorithm. Our framework unifies many regularizations and numerical methods previously appeared in the literature. We show the existence of the maximizer for the dual problem, complementary slackness conditions, providing a complete characterization of solutions for such class of variational problems. As a consequence, we study structural properties of these losses, including continuity, differentiability and provide explicit formulas for the its gradient. Finally, we provide theoretical guarantees of convergences and stability of the generalized Sinkhorn algorithm, even in the continuous setting. The techniques developed here are directly applicable also to study Wasserstein barycenters or, more generally, multi-marginal problems.</description><subject>Algorithms</subject><subject>Numerical methods</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7EKwjAURYMgWLT_EHAupElr6yyKm6DdJWhsU9OX-l6q4tfbwQ9wuWc4505YJJVKkzKTcsZiolYIIVeFzHMVseOhD7bTjleogXqPgTtPZIhruPKThXvjEbh2tUcbmo6_xuW1AYPj6eLhad4cTT04jfajg_WwYNObdmTiH-dsudtWm33So38MhsK59QPCqM4yS9dFKQqVqf-qL4MkQPA</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Simone Di Marino</creator><creator>Gerolin, Augusto</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200702</creationdate><title>Optimal Transport losses and Sinkhorn algorithm with general convex regularization</title><author>Simone Di Marino ; Gerolin, Augusto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24197807343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Numerical methods</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Simone Di Marino</creatorcontrib><creatorcontrib>Gerolin, Augusto</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simone Di Marino</au><au>Gerolin, Augusto</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimal Transport losses and Sinkhorn algorithm with general convex regularization</atitle><jtitle>arXiv.org</jtitle><date>2020-07-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We introduce a new class of convex-regularized Optimal Transport losses, which generalizes the classical Entropy-regularization of Optimal Transport and Sinkhorn divergences, and propose a generalized Sinkhorn algorithm. Our framework unifies many regularizations and numerical methods previously appeared in the literature. We show the existence of the maximizer for the dual problem, complementary slackness conditions, providing a complete characterization of solutions for such class of variational problems. As a consequence, we study structural properties of these losses, including continuity, differentiability and provide explicit formulas for the its gradient. Finally, we provide theoretical guarantees of convergences and stability of the generalized Sinkhorn algorithm, even in the continuous setting. The techniques developed here are directly applicable also to study Wasserstein barycenters or, more generally, multi-marginal problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2419780734 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Numerical methods Regularization |
title | Optimal Transport losses and Sinkhorn algorithm with general convex regularization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimal%20Transport%20losses%20and%20Sinkhorn%20algorithm%20with%20general%20convex%20regularization&rft.jtitle=arXiv.org&rft.au=Simone%20Di%20Marino&rft.date=2020-07-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2419780734%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24197807343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419780734&rft_id=info:pmid/&rfr_iscdi=true |