Loading…

Real-time capturing of seismic waveforms using high-rate BDS, GPS and GLONASS observations: the 2017 Mw 6.5 Jiuzhaigou earthquake in China

The rapid development of the BeiDou Satellite Navigation System (BDS) and other Global Navigation Satellite System (multi-GNSS) constellations provides a great opportunity to contribute to earthquake early warning systems in terms of capturing displacement and velocity waveforms for the estimation o...

Full description

Saved in:
Bibliographic Details
Published in:GPS solutions 2019, Vol.23 (1), Article 17
Main Authors: Li, Xingxing, Zheng, Kai, Li, Xin, Liu, Gang, Ge, Maorong, Wickert, Jens, Schuh, Harald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid development of the BeiDou Satellite Navigation System (BDS) and other Global Navigation Satellite System (multi-GNSS) constellations provides a great opportunity to contribute to earthquake early warning systems in terms of capturing displacement and velocity waveforms for the estimation of magnitude and fault slip inversion. In this study, we demonstrate the capability of BDS and the benefit of multi-GNSS for real-time capturing seismic waveforms using the combined high-rate BDS + GPS + GLONASS data collected during the 2017 Mw 6.5 Jiuzhaigou earthquake. For this event, we found that the displacements, derived from BDS precise point positioning (PPP) are better than that of Global Positioning System-only (GPS) results, especially in the east and vertical components with improvements of 43% and 23%. While the velocity waveforms from BDS present a comparable performance with GPS. the multi-GNSS fusion can significantly improve the accuracy by 47%, 55%, and 28% in the east, north, and vertical components compared with GPS-only results. The BDS and multi-GNSS derived displacement waveforms agree quite well with those obtained from integrating the acceleration, with accuracy at the millimeter level. In addition, the theoretical permanent displacement field calculated from a finite-fault slip model is selected as an independent reference, and the differences between GNSS derived permanent displacements and theoretical permanent displacements are mostly less than 1 mm. Therefore, we conclude that the BDS and multi-GNSS fusion can significantly contribute to the real-time capture of accurate seismic waveforms and that it has the potential to benefit for earthquake early warning and rapid geohazard assessment.
ISSN:1080-5370
1521-1886
DOI:10.1007/s10291-018-0808-9