Loading…

Back‐stepping sliding mode control of one degree of freedom flight motion table

A one degree of freedom flight motion table is used to simulate the rotational movement of flying objects in hardware‐in‐the‐loop laboratories. This table uses a dual motor driving servo system. Owing to the existence of a gear transmission system, the backlash nonlinear function on modeling is inev...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2020-07, Vol.22 (4), p.1700-1713
Main Authors: Zarei, Majid, Arvan, Mohammadreza, Vali, Ahmadreza, Behazin, Farid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3345-10cdf2c52c6d795cc02ca495061c6da1330d3d2691b1a5dc66496b2aaefc89b43
cites cdi_FETCH-LOGICAL-c3345-10cdf2c52c6d795cc02ca495061c6da1330d3d2691b1a5dc66496b2aaefc89b43
container_end_page 1713
container_issue 4
container_start_page 1700
container_title Asian journal of control
container_volume 22
creator Zarei, Majid
Arvan, Mohammadreza
Vali, Ahmadreza
Behazin, Farid
description A one degree of freedom flight motion table is used to simulate the rotational movement of flying objects in hardware‐in‐the‐loop laboratories. This table uses a dual motor driving servo system. Owing to the existence of a gear transmission system, the backlash nonlinear function on modeling is inevitable, system equations are non‐affine and back‐stepping theory cannot handle this kind of system directly. Through new modeling of the backlash function as the summation of certain and uncertain parts, a proper structure for the controller algorithm is created. The controller is constructed through a back‐stepping sliding mode control algorithm. The back‐stepping concept allows the control algorithm to be extended to a high‐order dynamical system. Meanwhile, the SMC could eliminate these system uncertainties as it has a match perturbation with a virtual or real input signal of the subsystem. For non‐measurable variables, a sliding mode observer is also designed. The simulation results clearly demonstrate the superiority of the proposed method in comparison with conventional PID/FO‐PID control methods in angular tracking and speed synchronization.
doi_str_mv 10.1002/asjc.2085
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420064174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420064174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3345-10cdf2c52c6d795cc02ca495061c6da1330d3d2691b1a5dc66496b2aaefc89b43</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EEqVw4A0sceKQ1nvjI1SsqoQQcLYcLyUljYOdCvXGI_CMPAkO5crpnxl9s_0AnGI0wQiRqU4rMyGo5HtghCVlhUCS7ueYC1yUgvBDcJTSCiGBaclH4PFSm7fvz6_Uu66r2yVMTW0HXQfroAltH0MDg4ehddC6ZXRuyHxWG9bQN_Xytc9wX4cW9rpq3DE48LpJ7uRPx-Dl-up5flssHm7u5heLwlDKeIGRsZ4YToywM8mNQcRoJnk-LFc0phRZaomQuMKaWyMEk6IiWjtvSlkxOgZnu7ldDO8bl3q1CpvY5pWKMJIfZHg2UOc7ysSQUnRedbFe67hVGKnBMTU4pgbHMjvdsR9147b_g-ri6X7-2_EDK0huQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420064174</pqid></control><display><type>article</type><title>Back‐stepping sliding mode control of one degree of freedom flight motion table</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zarei, Majid ; Arvan, Mohammadreza ; Vali, Ahmadreza ; Behazin, Farid</creator><creatorcontrib>Zarei, Majid ; Arvan, Mohammadreza ; Vali, Ahmadreza ; Behazin, Farid</creatorcontrib><description>A one degree of freedom flight motion table is used to simulate the rotational movement of flying objects in hardware‐in‐the‐loop laboratories. This table uses a dual motor driving servo system. Owing to the existence of a gear transmission system, the backlash nonlinear function on modeling is inevitable, system equations are non‐affine and back‐stepping theory cannot handle this kind of system directly. Through new modeling of the backlash function as the summation of certain and uncertain parts, a proper structure for the controller algorithm is created. The controller is constructed through a back‐stepping sliding mode control algorithm. The back‐stepping concept allows the control algorithm to be extended to a high‐order dynamical system. Meanwhile, the SMC could eliminate these system uncertainties as it has a match perturbation with a virtual or real input signal of the subsystem. For non‐measurable variables, a sliding mode observer is also designed. The simulation results clearly demonstrate the superiority of the proposed method in comparison with conventional PID/FO‐PID control methods in angular tracking and speed synchronization.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2085</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Angular speed ; backlash nonlinearity ; Back‐stepping ; Computer simulation ; Control algorithms ; Control methods ; Control theory ; Controllers ; Degrees of freedom ; dual drive ; Modelling ; Movement ; one‐DOF flight motion table ; Perturbation ; Proportional integral derivative ; Servomotors ; sliding mode ; Sliding mode control ; Subsystems ; Synchronism ; Tracking control</subject><ispartof>Asian journal of control, 2020-07, Vol.22 (4), p.1700-1713</ispartof><rights>2019 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><rights>2020 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3345-10cdf2c52c6d795cc02ca495061c6da1330d3d2691b1a5dc66496b2aaefc89b43</citedby><cites>FETCH-LOGICAL-c3345-10cdf2c52c6d795cc02ca495061c6da1330d3d2691b1a5dc66496b2aaefc89b43</cites><orcidid>0000-0001-6344-3448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zarei, Majid</creatorcontrib><creatorcontrib>Arvan, Mohammadreza</creatorcontrib><creatorcontrib>Vali, Ahmadreza</creatorcontrib><creatorcontrib>Behazin, Farid</creatorcontrib><title>Back‐stepping sliding mode control of one degree of freedom flight motion table</title><title>Asian journal of control</title><description>A one degree of freedom flight motion table is used to simulate the rotational movement of flying objects in hardware‐in‐the‐loop laboratories. This table uses a dual motor driving servo system. Owing to the existence of a gear transmission system, the backlash nonlinear function on modeling is inevitable, system equations are non‐affine and back‐stepping theory cannot handle this kind of system directly. Through new modeling of the backlash function as the summation of certain and uncertain parts, a proper structure for the controller algorithm is created. The controller is constructed through a back‐stepping sliding mode control algorithm. The back‐stepping concept allows the control algorithm to be extended to a high‐order dynamical system. Meanwhile, the SMC could eliminate these system uncertainties as it has a match perturbation with a virtual or real input signal of the subsystem. For non‐measurable variables, a sliding mode observer is also designed. The simulation results clearly demonstrate the superiority of the proposed method in comparison with conventional PID/FO‐PID control methods in angular tracking and speed synchronization.</description><subject>Algorithms</subject><subject>Angular speed</subject><subject>backlash nonlinearity</subject><subject>Back‐stepping</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>dual drive</subject><subject>Modelling</subject><subject>Movement</subject><subject>one‐DOF flight motion table</subject><subject>Perturbation</subject><subject>Proportional integral derivative</subject><subject>Servomotors</subject><subject>sliding mode</subject><subject>Sliding mode control</subject><subject>Subsystems</subject><subject>Synchronism</subject><subject>Tracking control</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQhi0EEqVw4A0sceKQ1nvjI1SsqoQQcLYcLyUljYOdCvXGI_CMPAkO5crpnxl9s_0AnGI0wQiRqU4rMyGo5HtghCVlhUCS7ueYC1yUgvBDcJTSCiGBaclH4PFSm7fvz6_Uu66r2yVMTW0HXQfroAltH0MDg4ehddC6ZXRuyHxWG9bQN_Xytc9wX4cW9rpq3DE48LpJ7uRPx-Dl-up5flssHm7u5heLwlDKeIGRsZ4YToywM8mNQcRoJnk-LFc0phRZaomQuMKaWyMEk6IiWjtvSlkxOgZnu7ldDO8bl3q1CpvY5pWKMJIfZHg2UOc7ysSQUnRedbFe67hVGKnBMTU4pgbHMjvdsR9147b_g-ri6X7-2_EDK0huQg</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Zarei, Majid</creator><creator>Arvan, Mohammadreza</creator><creator>Vali, Ahmadreza</creator><creator>Behazin, Farid</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-6344-3448</orcidid></search><sort><creationdate>202007</creationdate><title>Back‐stepping sliding mode control of one degree of freedom flight motion table</title><author>Zarei, Majid ; Arvan, Mohammadreza ; Vali, Ahmadreza ; Behazin, Farid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3345-10cdf2c52c6d795cc02ca495061c6da1330d3d2691b1a5dc66496b2aaefc89b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Angular speed</topic><topic>backlash nonlinearity</topic><topic>Back‐stepping</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>dual drive</topic><topic>Modelling</topic><topic>Movement</topic><topic>one‐DOF flight motion table</topic><topic>Perturbation</topic><topic>Proportional integral derivative</topic><topic>Servomotors</topic><topic>sliding mode</topic><topic>Sliding mode control</topic><topic>Subsystems</topic><topic>Synchronism</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarei, Majid</creatorcontrib><creatorcontrib>Arvan, Mohammadreza</creatorcontrib><creatorcontrib>Vali, Ahmadreza</creatorcontrib><creatorcontrib>Behazin, Farid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarei, Majid</au><au>Arvan, Mohammadreza</au><au>Vali, Ahmadreza</au><au>Behazin, Farid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back‐stepping sliding mode control of one degree of freedom flight motion table</atitle><jtitle>Asian journal of control</jtitle><date>2020-07</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>1700</spage><epage>1713</epage><pages>1700-1713</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>A one degree of freedom flight motion table is used to simulate the rotational movement of flying objects in hardware‐in‐the‐loop laboratories. This table uses a dual motor driving servo system. Owing to the existence of a gear transmission system, the backlash nonlinear function on modeling is inevitable, system equations are non‐affine and back‐stepping theory cannot handle this kind of system directly. Through new modeling of the backlash function as the summation of certain and uncertain parts, a proper structure for the controller algorithm is created. The controller is constructed through a back‐stepping sliding mode control algorithm. The back‐stepping concept allows the control algorithm to be extended to a high‐order dynamical system. Meanwhile, the SMC could eliminate these system uncertainties as it has a match perturbation with a virtual or real input signal of the subsystem. For non‐measurable variables, a sliding mode observer is also designed. The simulation results clearly demonstrate the superiority of the proposed method in comparison with conventional PID/FO‐PID control methods in angular tracking and speed synchronization.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2085</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6344-3448</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2020-07, Vol.22 (4), p.1700-1713
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2420064174
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Angular speed
backlash nonlinearity
Back‐stepping
Computer simulation
Control algorithms
Control methods
Control theory
Controllers
Degrees of freedom
dual drive
Modelling
Movement
one‐DOF flight motion table
Perturbation
Proportional integral derivative
Servomotors
sliding mode
Sliding mode control
Subsystems
Synchronism
Tracking control
title Back‐stepping sliding mode control of one degree of freedom flight motion table
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%E2%80%90stepping%20sliding%20mode%20control%20of%20one%20degree%20of%20freedom%20flight%20motion%20table&rft.jtitle=Asian%20journal%20of%20control&rft.au=Zarei,%20Majid&rft.date=2020-07&rft.volume=22&rft.issue=4&rft.spage=1700&rft.epage=1713&rft.pages=1700-1713&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2085&rft_dat=%3Cproquest_cross%3E2420064174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3345-10cdf2c52c6d795cc02ca495061c6da1330d3d2691b1a5dc66496b2aaefc89b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420064174&rft_id=info:pmid/&rfr_iscdi=true