Loading…
A priori and a posteriori error estimates for the quad-curl eigenvalue problem
In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Lixiu Zhang, Qian Sun, Jiguang Zhang, Zhimin |
description | In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order 2(s-1) is obtained if the eigenvector u\in H^{s+1}(\Omega). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the eigenvector in an energy norm and an upper bound for the eigenvalues. Numerical examples are presented for validation. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2420335549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420335549</sourcerecordid><originalsourceid>FETCH-proquest_journals_24203355493</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_cMF1Id40PpYiiitX7ktsbzUlbdo8_H4D-gGuhpkznBnLUIhNsS8RFyz3vuOc43aHUoqM3Y4wOm2dBjU0oGC0PtB3IOesA_JB9yqQhza18CKYomqKOjoDpJ80vJWJlCT2YahfsXmrjKf8l0u2vpzvp2uR-BSTq-psdENCFZbIhZCyPIj_Xh_bdz5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420335549</pqid></control><display><type>article</type><title>A priori and a posteriori error estimates for the quad-curl eigenvalue problem</title><source>ProQuest - Publicly Available Content Database</source><creator>Wang, Lixiu ; Zhang, Qian ; Sun, Jiguang ; Zhang, Zhimin</creator><creatorcontrib>Wang, Lixiu ; Zhang, Qian ; Sun, Jiguang ; Zhang, Zhimin</creatorcontrib><description>In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order 2(s-1) is obtained if the eigenvector u\in H^{s+1}(\Omega). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the eigenvector in an energy norm and an upper bound for the eigenvalues. Numerical examples are presented for validation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvalues ; Eigenvectors ; Upper bounds</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2420335549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25730,36988,44565</link.rule.ids></links><search><creatorcontrib>Wang, Lixiu</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Sun, Jiguang</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><title>A priori and a posteriori error estimates for the quad-curl eigenvalue problem</title><title>arXiv.org</title><description>In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order 2(s-1) is obtained if the eigenvector u\in H^{s+1}(\Omega). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the eigenvector in an energy norm and an upper bound for the eigenvalues. Numerical examples are presented for validation.</description><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAURIMgWLT_cMF1Id40PpYiiitX7ktsbzUlbdo8_H4D-gGuhpkznBnLUIhNsS8RFyz3vuOc43aHUoqM3Y4wOm2dBjU0oGC0PtB3IOesA_JB9yqQhza18CKYomqKOjoDpJ80vJWJlCT2YahfsXmrjKf8l0u2vpzvp2uR-BSTq-psdENCFZbIhZCyPIj_Xh_bdz5c</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Wang, Lixiu</creator><creator>Zhang, Qian</creator><creator>Sun, Jiguang</creator><creator>Zhang, Zhimin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200702</creationdate><title>A priori and a posteriori error estimates for the quad-curl eigenvalue problem</title><author>Wang, Lixiu ; Zhang, Qian ; Sun, Jiguang ; Zhang, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24203355493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lixiu</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Sun, Jiguang</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lixiu</au><au>Zhang, Qian</au><au>Sun, Jiguang</au><au>Zhang, Zhimin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A priori and a posteriori error estimates for the quad-curl eigenvalue problem</atitle><jtitle>arXiv.org</jtitle><date>2020-07-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order 2(s-1) is obtained if the eigenvector u\in H^{s+1}(\Omega). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the eigenvector in an energy norm and an upper bound for the eigenvalues. Numerical examples are presented for validation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2420335549 |
source | ProQuest - Publicly Available Content Database |
subjects | Eigenvalues Eigenvectors Upper bounds |
title | A priori and a posteriori error estimates for the quad-curl eigenvalue problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T07%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20priori%20and%20a%20posteriori%20error%20estimates%20for%20the%20quad-curl%20eigenvalue%20problem&rft.jtitle=arXiv.org&rft.au=Wang,%20Lixiu&rft.date=2020-07-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2420335549%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24203355493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420335549&rft_id=info:pmid/&rfr_iscdi=true |