Loading…

A priori and a posteriori error estimates for the quad-curl eigenvalue problem

In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Authors: Wang, Lixiu, Zhang, Qian, Sun, Jiguang, Zhang, Zhimin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Lixiu
Zhang, Qian
Sun, Jiguang
Zhang, Zhimin
description In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order 2(s-1) is obtained if the eigenvector u\in H^{s+1}(\Omega). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the eigenvector in an energy norm and an upper bound for the eigenvalues. Numerical examples are presented for validation.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2420335549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420335549</sourcerecordid><originalsourceid>FETCH-proquest_journals_24203355493</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_cMF1Id40PpYiiitX7ktsbzUlbdo8_H4D-gGuhpkznBnLUIhNsS8RFyz3vuOc43aHUoqM3Y4wOm2dBjU0oGC0PtB3IOesA_JB9yqQhza18CKYomqKOjoDpJ80vJWJlCT2YahfsXmrjKf8l0u2vpzvp2uR-BSTq-psdENCFZbIhZCyPIj_Xh_bdz5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420335549</pqid></control><display><type>article</type><title>A priori and a posteriori error estimates for the quad-curl eigenvalue problem</title><source>ProQuest - Publicly Available Content Database</source><creator>Wang, Lixiu ; Zhang, Qian ; Sun, Jiguang ; Zhang, Zhimin</creator><creatorcontrib>Wang, Lixiu ; Zhang, Qian ; Sun, Jiguang ; Zhang, Zhimin</creatorcontrib><description>In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order 2(s-1) is obtained if the eigenvector u\in H^{s+1}(\Omega). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the eigenvector in an energy norm and an upper bound for the eigenvalues. Numerical examples are presented for validation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvalues ; Eigenvectors ; Upper bounds</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2420335549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25730,36988,44565</link.rule.ids></links><search><creatorcontrib>Wang, Lixiu</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Sun, Jiguang</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><title>A priori and a posteriori error estimates for the quad-curl eigenvalue problem</title><title>arXiv.org</title><description>In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order 2(s-1) is obtained if the eigenvector u\in H^{s+1}(\Omega). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the eigenvector in an energy norm and an upper bound for the eigenvalues. Numerical examples are presented for validation.</description><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAURIMgWLT_cMF1Id40PpYiiitX7ktsbzUlbdo8_H4D-gGuhpkznBnLUIhNsS8RFyz3vuOc43aHUoqM3Y4wOm2dBjU0oGC0PtB3IOesA_JB9yqQhza18CKYomqKOjoDpJ80vJWJlCT2YahfsXmrjKf8l0u2vpzvp2uR-BSTq-psdENCFZbIhZCyPIj_Xh_bdz5c</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Wang, Lixiu</creator><creator>Zhang, Qian</creator><creator>Sun, Jiguang</creator><creator>Zhang, Zhimin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200702</creationdate><title>A priori and a posteriori error estimates for the quad-curl eigenvalue problem</title><author>Wang, Lixiu ; Zhang, Qian ; Sun, Jiguang ; Zhang, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24203355493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lixiu</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Sun, Jiguang</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lixiu</au><au>Zhang, Qian</au><au>Sun, Jiguang</au><au>Zhang, Zhimin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A priori and a posteriori error estimates for the quad-curl eigenvalue problem</atitle><jtitle>arXiv.org</jtitle><date>2020-07-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we propose a new family of H(curl^2)-conforming elements for the quad-curl eigenvalue problem in 2D. The accuracy of this family is one order higher than that in [32]. We prove a priori and a posteriori error estimates. The a priori estimate of the eigenvalue with a convergence order 2(s-1) is obtained if the eigenvector u\in H^{s+1}(\Omega). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the eigenvector in an energy norm and an upper bound for the eigenvalues. Numerical examples are presented for validation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2420335549
source ProQuest - Publicly Available Content Database
subjects Eigenvalues
Eigenvectors
Upper bounds
title A priori and a posteriori error estimates for the quad-curl eigenvalue problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T07%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20priori%20and%20a%20posteriori%20error%20estimates%20for%20the%20quad-curl%20eigenvalue%20problem&rft.jtitle=arXiv.org&rft.au=Wang,%20Lixiu&rft.date=2020-07-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2420335549%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24203355493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420335549&rft_id=info:pmid/&rfr_iscdi=true