Loading…

Passivation capability of carbon black layers for screen-printed battery applications with Ag current collectors

Screen-printed thin-film batteries comprise current collectors typically realised with commercially available conductive silver inks primarily designed for non-critical printed electronics applications. The avoidance of electrochemical interaction of metallic silver with the respective battery chemi...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2020, Vol.126 (8), Article 591
Main Authors: Rassek, Patrick, Steiner, Erich, Claypole, Timothy C., Krebs, Martin, Herrenbauer, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Screen-printed thin-film batteries comprise current collectors typically realised with commercially available conductive silver inks primarily designed for non-critical printed electronics applications. The avoidance of electrochemical interaction of metallic silver with the respective battery chemistry requires printing of an additional passivation layer. The wide range of printing inks available makes it difficult for researchers to select and qualify battery specific inks that ensure a long-life cycle without limitation of relevant battery performance parameters. This study presents a novel method to quantify the passivation capability of carbon black passivation layers for silver current collectors in 6.0 M potassium hydroxide and 5.8 M zinc chloride aqueous electrolyte solutions. Cyclic voltammetry is used to determine possible electrochemical interaction of passivated current collectors with the electrolyte media which constitute battery performance degrading parasitic side reactions. An innovative approach based on Faraday’s law of electrolysis is presented to transform cyclic voltammogram curve progressions into comparable numerical values. The mathematical approach allows quantitative comparison of individually fabricated passivation layers with respect to their passivation capability instead of interpreting a large number of cyclic voltammograms.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-020-03785-y