Loading…

Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 as a novel and recoverable hybrid catalyst for expeditious and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones via one-pot three-component reaction

Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 (MCM-41-Pr-BTA), as a novel hybrid organosilica, was prepared and properly characterized by the Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller, therm...

Full description

Saved in:
Bibliographic Details
Published in:Research on chemical intermediates 2020-08, Vol.46 (8), p.3891-3909
Main Authors: Nikooei, Niusha, Dekamin, Mohammad G., Valiey, Ehsan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 (MCM-41-Pr-BTA), as a novel hybrid organosilica, was prepared and properly characterized by the Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller, thermal gravimetric analysis and energy-dispersive X-ray spectroscopy to evaluate the functional groups, crystallinity, surface area, morphology, particle size distribution and loading of functional groups. Interestingly, the 1,3-propylene linker used in this study incorporates appropriate catalytic activity into the MCM-41 framework compared to the more known trialkoxypropyl silanes. This new organosilica can be used as a hybrid nanocatalyst for the expeditious and efficient synthesis of 2,3-dihydroquinazolin-4(1 H )-one derivatives, as an important pharmaceutical scaffold, in aqueous media via a three-component one-pot condensation of isatoic anhydride and aromatic aldehydes with primary amines or ammonium salts. This method has several advantages such as low catalyst loading, high to excellent yields, short reaction times, working under green conditions and simple workup.
ISSN:0922-6168
1568-5675
DOI:10.1007/s11164-020-04179-8