Loading…
Room-temperature optomechanical squeezing
Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitationa...
Saved in:
Published in: | Nature physics 2020-07, Vol.16 (7), p.784-788 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63 |
container_end_page | 788 |
container_issue | 7 |
container_start_page | 784 |
container_title | Nature physics |
container_volume | 16 |
creator | Aggarwal, Nancy Cullen, Torrey J. Cripe, Jonathan Cole, Garrett D. Lanza, Robert Libson, Adam Follman, David Heu, Paula Corbitt, Thomas Mavalvala, Nergis |
description | Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave detectors. In optomechanical squeezers, the radiation-pressure-driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light, which induce the squeezing. However, thermally driven fluctuations of the mechanical oscillator’s position make it difficult to observe the quantum correlations at room temperature and at low frequencies. Here, we present a measurement of optomechanically squeezed light, performed at room temperature in a broad band near the audio-frequency regions relevant to gravitational wave detectors. We observe sub-Poissonian quantum noise in a frequency band of 30–70 kHz with a maximum reduction of 0.7 ± 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on the calibration of shot noise.
The ability to create optomechanically squeezed light at room temperature across a frequency range in the audio band could improve the measurement precision of future interferometric detectors for gravitational waves. |
doi_str_mv | 10.1038/s41567-020-0877-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420903131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420903131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvBk4foTJIm2aMUrUJBED2H7HZSW7qbNdlC9de7ZUVPMod3Du8HPIxdItwgSHubFU614SCAgzWG74_YCI2acqEsHv_-Rp6ys5w3AEpolCN2_RJjzTuqW0q-2yWaxLaLNVXvvllXfjvJHzuir3WzOmcnwW8zXfzomL093L_OHvnief40u1vwSqLuOBVVJTUZtBoRrC6DLrUOhpT1uASvSIAop6JQpjDlstQleBuQVFBLUEHLMbsaetsU--3cuU3cpaafdEIJKEBif2OGg6tKMedEwbVpXfv06RDcgYgbiLieiDsQcfs-I4ZM7r3NitJf8_-hb8C2Y2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420903131</pqid></control><display><type>article</type><title>Room-temperature optomechanical squeezing</title><source>Nature Publishing Group</source><creator>Aggarwal, Nancy ; Cullen, Torrey J. ; Cripe, Jonathan ; Cole, Garrett D. ; Lanza, Robert ; Libson, Adam ; Follman, David ; Heu, Paula ; Corbitt, Thomas ; Mavalvala, Nergis</creator><creatorcontrib>Aggarwal, Nancy ; Cullen, Torrey J. ; Cripe, Jonathan ; Cole, Garrett D. ; Lanza, Robert ; Libson, Adam ; Follman, David ; Heu, Paula ; Corbitt, Thomas ; Mavalvala, Nergis</creatorcontrib><description>Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave detectors. In optomechanical squeezers, the radiation-pressure-driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light, which induce the squeezing. However, thermally driven fluctuations of the mechanical oscillator’s position make it difficult to observe the quantum correlations at room temperature and at low frequencies. Here, we present a measurement of optomechanically squeezed light, performed at room temperature in a broad band near the audio-frequency regions relevant to gravitational wave detectors. We observe sub-Poissonian quantum noise in a frequency band of 30–70 kHz with a maximum reduction of 0.7 ± 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on the calibration of shot noise.
The ability to create optomechanically squeezed light at room temperature across a frequency range in the audio band could improve the measurement precision of future interferometric detectors for gravitational waves.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-0877-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483 ; 639/766/483/1255 ; Atomic ; Classical and Continuum Physics ; Coherent light ; Complex Systems ; Compressing ; Condensed Matter Physics ; Crystals ; Detectors ; Frequencies ; Frequency ranges ; Gravitation ; Gravitational waves ; Light ; Light sources ; Mathematical and Computational Physics ; Measurement methods ; Mechanical oscillators ; Molecular ; Noise levels ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quadratures ; Room temperature ; Sensitivity ; Sensors ; Shot noise ; Theoretical</subject><ispartof>Nature physics, 2020-07, Vol.16 (7), p.784-788</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63</citedby><cites>FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63</cites><orcidid>0000-0002-0977-8711 ; 0000-0001-7149-3218 ; 0000-0002-0026-3877 ; 0000-0002-5520-8541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Aggarwal, Nancy</creatorcontrib><creatorcontrib>Cullen, Torrey J.</creatorcontrib><creatorcontrib>Cripe, Jonathan</creatorcontrib><creatorcontrib>Cole, Garrett D.</creatorcontrib><creatorcontrib>Lanza, Robert</creatorcontrib><creatorcontrib>Libson, Adam</creatorcontrib><creatorcontrib>Follman, David</creatorcontrib><creatorcontrib>Heu, Paula</creatorcontrib><creatorcontrib>Corbitt, Thomas</creatorcontrib><creatorcontrib>Mavalvala, Nergis</creatorcontrib><title>Room-temperature optomechanical squeezing</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave detectors. In optomechanical squeezers, the radiation-pressure-driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light, which induce the squeezing. However, thermally driven fluctuations of the mechanical oscillator’s position make it difficult to observe the quantum correlations at room temperature and at low frequencies. Here, we present a measurement of optomechanically squeezed light, performed at room temperature in a broad band near the audio-frequency regions relevant to gravitational wave detectors. We observe sub-Poissonian quantum noise in a frequency band of 30–70 kHz with a maximum reduction of 0.7 ± 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on the calibration of shot noise.
The ability to create optomechanically squeezed light at room temperature across a frequency range in the audio band could improve the measurement precision of future interferometric detectors for gravitational waves.</description><subject>639/766/483</subject><subject>639/766/483/1255</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Coherent light</subject><subject>Complex Systems</subject><subject>Compressing</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Detectors</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Light</subject><subject>Light sources</subject><subject>Mathematical and Computational Physics</subject><subject>Measurement methods</subject><subject>Mechanical oscillators</subject><subject>Molecular</subject><subject>Noise levels</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratures</subject><subject>Room temperature</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Shot noise</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvBk4foTJIm2aMUrUJBED2H7HZSW7qbNdlC9de7ZUVPMod3Du8HPIxdItwgSHubFU614SCAgzWG74_YCI2acqEsHv_-Rp6ys5w3AEpolCN2_RJjzTuqW0q-2yWaxLaLNVXvvllXfjvJHzuir3WzOmcnwW8zXfzomL093L_OHvnief40u1vwSqLuOBVVJTUZtBoRrC6DLrUOhpT1uASvSIAop6JQpjDlstQleBuQVFBLUEHLMbsaetsU--3cuU3cpaafdEIJKEBif2OGg6tKMedEwbVpXfv06RDcgYgbiLieiDsQcfs-I4ZM7r3NitJf8_-hb8C2Y2k</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Aggarwal, Nancy</creator><creator>Cullen, Torrey J.</creator><creator>Cripe, Jonathan</creator><creator>Cole, Garrett D.</creator><creator>Lanza, Robert</creator><creator>Libson, Adam</creator><creator>Follman, David</creator><creator>Heu, Paula</creator><creator>Corbitt, Thomas</creator><creator>Mavalvala, Nergis</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0977-8711</orcidid><orcidid>https://orcid.org/0000-0001-7149-3218</orcidid><orcidid>https://orcid.org/0000-0002-0026-3877</orcidid><orcidid>https://orcid.org/0000-0002-5520-8541</orcidid></search><sort><creationdate>20200701</creationdate><title>Room-temperature optomechanical squeezing</title><author>Aggarwal, Nancy ; Cullen, Torrey J. ; Cripe, Jonathan ; Cole, Garrett D. ; Lanza, Robert ; Libson, Adam ; Follman, David ; Heu, Paula ; Corbitt, Thomas ; Mavalvala, Nergis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483</topic><topic>639/766/483/1255</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Coherent light</topic><topic>Complex Systems</topic><topic>Compressing</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Detectors</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Light</topic><topic>Light sources</topic><topic>Mathematical and Computational Physics</topic><topic>Measurement methods</topic><topic>Mechanical oscillators</topic><topic>Molecular</topic><topic>Noise levels</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratures</topic><topic>Room temperature</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Shot noise</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Nancy</creatorcontrib><creatorcontrib>Cullen, Torrey J.</creatorcontrib><creatorcontrib>Cripe, Jonathan</creatorcontrib><creatorcontrib>Cole, Garrett D.</creatorcontrib><creatorcontrib>Lanza, Robert</creatorcontrib><creatorcontrib>Libson, Adam</creatorcontrib><creatorcontrib>Follman, David</creatorcontrib><creatorcontrib>Heu, Paula</creatorcontrib><creatorcontrib>Corbitt, Thomas</creatorcontrib><creatorcontrib>Mavalvala, Nergis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Nancy</au><au>Cullen, Torrey J.</au><au>Cripe, Jonathan</au><au>Cole, Garrett D.</au><au>Lanza, Robert</au><au>Libson, Adam</au><au>Follman, David</au><au>Heu, Paula</au><au>Corbitt, Thomas</au><au>Mavalvala, Nergis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature optomechanical squeezing</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>784</spage><epage>788</epage><pages>784-788</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave detectors. In optomechanical squeezers, the radiation-pressure-driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light, which induce the squeezing. However, thermally driven fluctuations of the mechanical oscillator’s position make it difficult to observe the quantum correlations at room temperature and at low frequencies. Here, we present a measurement of optomechanically squeezed light, performed at room temperature in a broad band near the audio-frequency regions relevant to gravitational wave detectors. We observe sub-Poissonian quantum noise in a frequency band of 30–70 kHz with a maximum reduction of 0.7 ± 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on the calibration of shot noise.
The ability to create optomechanically squeezed light at room temperature across a frequency range in the audio band could improve the measurement precision of future interferometric detectors for gravitational waves.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0877-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0977-8711</orcidid><orcidid>https://orcid.org/0000-0001-7149-3218</orcidid><orcidid>https://orcid.org/0000-0002-0026-3877</orcidid><orcidid>https://orcid.org/0000-0002-5520-8541</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-07, Vol.16 (7), p.784-788 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2420903131 |
source | Nature Publishing Group |
subjects | 639/766/483 639/766/483/1255 Atomic Classical and Continuum Physics Coherent light Complex Systems Compressing Condensed Matter Physics Crystals Detectors Frequencies Frequency ranges Gravitation Gravitational waves Light Light sources Mathematical and Computational Physics Measurement methods Mechanical oscillators Molecular Noise levels Optical and Plasma Physics Physics Physics and Astronomy Quadratures Room temperature Sensitivity Sensors Shot noise Theoretical |
title | Room-temperature optomechanical squeezing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20optomechanical%20squeezing&rft.jtitle=Nature%20physics&rft.au=Aggarwal,%20Nancy&rft.date=2020-07-01&rft.volume=16&rft.issue=7&rft.spage=784&rft.epage=788&rft.pages=784-788&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0877-x&rft_dat=%3Cproquest_cross%3E2420903131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420903131&rft_id=info:pmid/&rfr_iscdi=true |