Loading…

Room-temperature optomechanical squeezing

Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitationa...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2020-07, Vol.16 (7), p.784-788
Main Authors: Aggarwal, Nancy, Cullen, Torrey J., Cripe, Jonathan, Cole, Garrett D., Lanza, Robert, Libson, Adam, Follman, David, Heu, Paula, Corbitt, Thomas, Mavalvala, Nergis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63
cites cdi_FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63
container_end_page 788
container_issue 7
container_start_page 784
container_title Nature physics
container_volume 16
creator Aggarwal, Nancy
Cullen, Torrey J.
Cripe, Jonathan
Cole, Garrett D.
Lanza, Robert
Libson, Adam
Follman, David
Heu, Paula
Corbitt, Thomas
Mavalvala, Nergis
description Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave detectors. In optomechanical squeezers, the radiation-pressure-driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light, which induce the squeezing. However, thermally driven fluctuations of the mechanical oscillator’s position make it difficult to observe the quantum correlations at room temperature and at low frequencies. Here, we present a measurement of optomechanically squeezed light, performed at room temperature in a broad band near the audio-frequency regions relevant to gravitational wave detectors. We observe sub-Poissonian quantum noise in a frequency band of 30–70 kHz with a maximum reduction of 0.7 ± 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on the calibration of shot noise. The ability to create optomechanically squeezed light at room temperature across a frequency range in the audio band could improve the measurement precision of future interferometric detectors for gravitational waves.
doi_str_mv 10.1038/s41567-020-0877-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420903131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420903131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvBk4foTJIm2aMUrUJBED2H7HZSW7qbNdlC9de7ZUVPMod3Du8HPIxdItwgSHubFU614SCAgzWG74_YCI2acqEsHv_-Rp6ys5w3AEpolCN2_RJjzTuqW0q-2yWaxLaLNVXvvllXfjvJHzuir3WzOmcnwW8zXfzomL093L_OHvnief40u1vwSqLuOBVVJTUZtBoRrC6DLrUOhpT1uASvSIAop6JQpjDlstQleBuQVFBLUEHLMbsaetsU--3cuU3cpaafdEIJKEBif2OGg6tKMedEwbVpXfv06RDcgYgbiLieiDsQcfs-I4ZM7r3NitJf8_-hb8C2Y2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420903131</pqid></control><display><type>article</type><title>Room-temperature optomechanical squeezing</title><source>Nature Publishing Group</source><creator>Aggarwal, Nancy ; Cullen, Torrey J. ; Cripe, Jonathan ; Cole, Garrett D. ; Lanza, Robert ; Libson, Adam ; Follman, David ; Heu, Paula ; Corbitt, Thomas ; Mavalvala, Nergis</creator><creatorcontrib>Aggarwal, Nancy ; Cullen, Torrey J. ; Cripe, Jonathan ; Cole, Garrett D. ; Lanza, Robert ; Libson, Adam ; Follman, David ; Heu, Paula ; Corbitt, Thomas ; Mavalvala, Nergis</creatorcontrib><description>Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave detectors. In optomechanical squeezers, the radiation-pressure-driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light, which induce the squeezing. However, thermally driven fluctuations of the mechanical oscillator’s position make it difficult to observe the quantum correlations at room temperature and at low frequencies. Here, we present a measurement of optomechanically squeezed light, performed at room temperature in a broad band near the audio-frequency regions relevant to gravitational wave detectors. We observe sub-Poissonian quantum noise in a frequency band of 30–70 kHz with a maximum reduction of 0.7 ± 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on the calibration of shot noise. The ability to create optomechanically squeezed light at room temperature across a frequency range in the audio band could improve the measurement precision of future interferometric detectors for gravitational waves.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-0877-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483 ; 639/766/483/1255 ; Atomic ; Classical and Continuum Physics ; Coherent light ; Complex Systems ; Compressing ; Condensed Matter Physics ; Crystals ; Detectors ; Frequencies ; Frequency ranges ; Gravitation ; Gravitational waves ; Light ; Light sources ; Mathematical and Computational Physics ; Measurement methods ; Mechanical oscillators ; Molecular ; Noise levels ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quadratures ; Room temperature ; Sensitivity ; Sensors ; Shot noise ; Theoretical</subject><ispartof>Nature physics, 2020-07, Vol.16 (7), p.784-788</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63</citedby><cites>FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63</cites><orcidid>0000-0002-0977-8711 ; 0000-0001-7149-3218 ; 0000-0002-0026-3877 ; 0000-0002-5520-8541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Aggarwal, Nancy</creatorcontrib><creatorcontrib>Cullen, Torrey J.</creatorcontrib><creatorcontrib>Cripe, Jonathan</creatorcontrib><creatorcontrib>Cole, Garrett D.</creatorcontrib><creatorcontrib>Lanza, Robert</creatorcontrib><creatorcontrib>Libson, Adam</creatorcontrib><creatorcontrib>Follman, David</creatorcontrib><creatorcontrib>Heu, Paula</creatorcontrib><creatorcontrib>Corbitt, Thomas</creatorcontrib><creatorcontrib>Mavalvala, Nergis</creatorcontrib><title>Room-temperature optomechanical squeezing</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave detectors. In optomechanical squeezers, the radiation-pressure-driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light, which induce the squeezing. However, thermally driven fluctuations of the mechanical oscillator’s position make it difficult to observe the quantum correlations at room temperature and at low frequencies. Here, we present a measurement of optomechanically squeezed light, performed at room temperature in a broad band near the audio-frequency regions relevant to gravitational wave detectors. We observe sub-Poissonian quantum noise in a frequency band of 30–70 kHz with a maximum reduction of 0.7 ± 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on the calibration of shot noise. The ability to create optomechanically squeezed light at room temperature across a frequency range in the audio band could improve the measurement precision of future interferometric detectors for gravitational waves.</description><subject>639/766/483</subject><subject>639/766/483/1255</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Coherent light</subject><subject>Complex Systems</subject><subject>Compressing</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Detectors</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Light</subject><subject>Light sources</subject><subject>Mathematical and Computational Physics</subject><subject>Measurement methods</subject><subject>Mechanical oscillators</subject><subject>Molecular</subject><subject>Noise levels</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratures</subject><subject>Room temperature</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Shot noise</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvBk4foTJIm2aMUrUJBED2H7HZSW7qbNdlC9de7ZUVPMod3Du8HPIxdItwgSHubFU614SCAgzWG74_YCI2acqEsHv_-Rp6ys5w3AEpolCN2_RJjzTuqW0q-2yWaxLaLNVXvvllXfjvJHzuir3WzOmcnwW8zXfzomL093L_OHvnief40u1vwSqLuOBVVJTUZtBoRrC6DLrUOhpT1uASvSIAop6JQpjDlstQleBuQVFBLUEHLMbsaetsU--3cuU3cpaafdEIJKEBif2OGg6tKMedEwbVpXfv06RDcgYgbiLieiDsQcfs-I4ZM7r3NitJf8_-hb8C2Y2k</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Aggarwal, Nancy</creator><creator>Cullen, Torrey J.</creator><creator>Cripe, Jonathan</creator><creator>Cole, Garrett D.</creator><creator>Lanza, Robert</creator><creator>Libson, Adam</creator><creator>Follman, David</creator><creator>Heu, Paula</creator><creator>Corbitt, Thomas</creator><creator>Mavalvala, Nergis</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0977-8711</orcidid><orcidid>https://orcid.org/0000-0001-7149-3218</orcidid><orcidid>https://orcid.org/0000-0002-0026-3877</orcidid><orcidid>https://orcid.org/0000-0002-5520-8541</orcidid></search><sort><creationdate>20200701</creationdate><title>Room-temperature optomechanical squeezing</title><author>Aggarwal, Nancy ; Cullen, Torrey J. ; Cripe, Jonathan ; Cole, Garrett D. ; Lanza, Robert ; Libson, Adam ; Follman, David ; Heu, Paula ; Corbitt, Thomas ; Mavalvala, Nergis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483</topic><topic>639/766/483/1255</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Coherent light</topic><topic>Complex Systems</topic><topic>Compressing</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Detectors</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Light</topic><topic>Light sources</topic><topic>Mathematical and Computational Physics</topic><topic>Measurement methods</topic><topic>Mechanical oscillators</topic><topic>Molecular</topic><topic>Noise levels</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratures</topic><topic>Room temperature</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Shot noise</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Nancy</creatorcontrib><creatorcontrib>Cullen, Torrey J.</creatorcontrib><creatorcontrib>Cripe, Jonathan</creatorcontrib><creatorcontrib>Cole, Garrett D.</creatorcontrib><creatorcontrib>Lanza, Robert</creatorcontrib><creatorcontrib>Libson, Adam</creatorcontrib><creatorcontrib>Follman, David</creatorcontrib><creatorcontrib>Heu, Paula</creatorcontrib><creatorcontrib>Corbitt, Thomas</creatorcontrib><creatorcontrib>Mavalvala, Nergis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Nancy</au><au>Cullen, Torrey J.</au><au>Cripe, Jonathan</au><au>Cole, Garrett D.</au><au>Lanza, Robert</au><au>Libson, Adam</au><au>Follman, David</au><au>Heu, Paula</au><au>Corbitt, Thomas</au><au>Mavalvala, Nergis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature optomechanical squeezing</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>784</spage><epage>788</epage><pages>784-788</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Squeezed light—light with quantum noise lower than shot noise in some quadratures and higher in others—can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave detectors. In optomechanical squeezers, the radiation-pressure-driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light, which induce the squeezing. However, thermally driven fluctuations of the mechanical oscillator’s position make it difficult to observe the quantum correlations at room temperature and at low frequencies. Here, we present a measurement of optomechanically squeezed light, performed at room temperature in a broad band near the audio-frequency regions relevant to gravitational wave detectors. We observe sub-Poissonian quantum noise in a frequency band of 30–70 kHz with a maximum reduction of 0.7 ± 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on the calibration of shot noise. The ability to create optomechanically squeezed light at room temperature across a frequency range in the audio band could improve the measurement precision of future interferometric detectors for gravitational waves.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0877-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0977-8711</orcidid><orcidid>https://orcid.org/0000-0001-7149-3218</orcidid><orcidid>https://orcid.org/0000-0002-0026-3877</orcidid><orcidid>https://orcid.org/0000-0002-5520-8541</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-07, Vol.16 (7), p.784-788
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2420903131
source Nature Publishing Group
subjects 639/766/483
639/766/483/1255
Atomic
Classical and Continuum Physics
Coherent light
Complex Systems
Compressing
Condensed Matter Physics
Crystals
Detectors
Frequencies
Frequency ranges
Gravitation
Gravitational waves
Light
Light sources
Mathematical and Computational Physics
Measurement methods
Mechanical oscillators
Molecular
Noise levels
Optical and Plasma Physics
Physics
Physics and Astronomy
Quadratures
Room temperature
Sensitivity
Sensors
Shot noise
Theoretical
title Room-temperature optomechanical squeezing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20optomechanical%20squeezing&rft.jtitle=Nature%20physics&rft.au=Aggarwal,%20Nancy&rft.date=2020-07-01&rft.volume=16&rft.issue=7&rft.spage=784&rft.epage=788&rft.pages=784-788&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0877-x&rft_dat=%3Cproquest_cross%3E2420903131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e9cc36e718611086bf6b66f7e48a1d0a4e202b5294797bdb6b0a8f1e4f4d04f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420903131&rft_id=info:pmid/&rfr_iscdi=true