Loading…
Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems
Summary The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued ti...
Saved in:
Published in: | International journal for numerical methods in engineering 2020-08, Vol.121 (16), p.3505-3528 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783 |
---|---|
cites | cdi_FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783 |
container_end_page | 3528 |
container_issue | 16 |
container_start_page | 3505 |
container_title | International journal for numerical methods in engineering |
container_volume | 121 |
creator | Borgioli, Francesco Hajdu, David Insperger, Tamas Stepan, Gabor Michiels, Wim |
description | Summary
The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued time‐periodic uncertainties affecting the coefficient matrices, and the presented method is able to fully exploit structure and potential interdependencies among the uncertainties. The assessment of robustness relies on the computation of the pseudospectral radius of the monodromy operator, namely, the largest Floquet multiplier that the system can attain within a given range of perturbations. Instrumental to the adopted novel approach, a solver for the computation of Floquet multipliers is introduced, which results into the solution of a generalized eigenvalue problem which is linear w.r.t. (samples of) the original system matrices. We provide numerical simulations for popular applications modeled by time‐periodic delay systems, such as the inverted pendulum subject to an act‐and‐wait controller, a single‐degree‐of‐freedom milling model and a turning operation with spindle speed variation. |
doi_str_mv | 10.1002/nme.6368 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421002668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421002668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783</originalsourceid><addsrcrecordid>eNp10MlOwzAQBmALgUQpSDxCJC5cUrwkTnJEVVmkshzgbDn2BFxlKR5HKDcegWfkSUharpxGmvk0o_kJOWd0wSjlV20DCylkfkBmjBZZTDnNDslsHBVxWuTsmJwgbihlLKViRppnhN52uAUTvK6jBsJ7Z6Oq85FGBETXvkUYdOlqF4bId2WPoR37O1K7FrSPgmvg5-t7C9511pnIQq0HsJEdWt04M67FAQM0eEqOKl0jnP3VOXm9Wb0s7-L10-398nodG8GzPE4E07osEwFJKZK0zDNRptJkPOPUVowbKSGRJoUqKcz0iTCV5UVlTW65zXIxJxf7vVvfffSAQW263rfjScUTPuUk5aQu98r4DtFDpbbeNdoPilE1ITWGqaYwRxrv6aerYfjXqceH1c7_ArpNeR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421002668</pqid></control><display><type>article</type><title>Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Borgioli, Francesco ; Hajdu, David ; Insperger, Tamas ; Stepan, Gabor ; Michiels, Wim</creator><creatorcontrib>Borgioli, Francesco ; Hajdu, David ; Insperger, Tamas ; Stepan, Gabor ; Michiels, Wim</creatorcontrib><description>Summary
The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued time‐periodic uncertainties affecting the coefficient matrices, and the presented method is able to fully exploit structure and potential interdependencies among the uncertainties. The assessment of robustness relies on the computation of the pseudospectral radius of the monodromy operator, namely, the largest Floquet multiplier that the system can attain within a given range of perturbations. Instrumental to the adopted novel approach, a solver for the computation of Floquet multipliers is introduced, which results into the solution of a generalized eigenvalue problem which is linear w.r.t. (samples of) the original system matrices. We provide numerical simulations for popular applications modeled by time‐periodic delay systems, such as the inverted pendulum subject to an act‐and‐wait controller, a single‐degree‐of‐freedom milling model and a turning operation with spindle speed variation.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6368</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Computation ; Computer simulation ; differential equations ; Dynamic stability ; dynamical systems ; Eigenvalues ; Mathematical analysis ; Mathematical models ; Matrix methods ; Operators (mathematics) ; optimization ; Pendulums ; Periodic functions ; Robustness (mathematics) ; spectral ; Spectral methods ; stability ; Stability analysis ; Uncertainty ; vibrations</subject><ispartof>International journal for numerical methods in engineering, 2020-08, Vol.121 (16), p.3505-3528</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783</citedby><cites>FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783</cites><orcidid>0000-0002-0877-0080 ; 0000-0002-2947-5910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Borgioli, Francesco</creatorcontrib><creatorcontrib>Hajdu, David</creatorcontrib><creatorcontrib>Insperger, Tamas</creatorcontrib><creatorcontrib>Stepan, Gabor</creatorcontrib><creatorcontrib>Michiels, Wim</creatorcontrib><title>Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems</title><title>International journal for numerical methods in engineering</title><description>Summary
The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued time‐periodic uncertainties affecting the coefficient matrices, and the presented method is able to fully exploit structure and potential interdependencies among the uncertainties. The assessment of robustness relies on the computation of the pseudospectral radius of the monodromy operator, namely, the largest Floquet multiplier that the system can attain within a given range of perturbations. Instrumental to the adopted novel approach, a solver for the computation of Floquet multipliers is introduced, which results into the solution of a generalized eigenvalue problem which is linear w.r.t. (samples of) the original system matrices. We provide numerical simulations for popular applications modeled by time‐periodic delay systems, such as the inverted pendulum subject to an act‐and‐wait controller, a single‐degree‐of‐freedom milling model and a turning operation with spindle speed variation.</description><subject>Computation</subject><subject>Computer simulation</subject><subject>differential equations</subject><subject>Dynamic stability</subject><subject>dynamical systems</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Operators (mathematics)</subject><subject>optimization</subject><subject>Pendulums</subject><subject>Periodic functions</subject><subject>Robustness (mathematics)</subject><subject>spectral</subject><subject>Spectral methods</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Uncertainty</subject><subject>vibrations</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10MlOwzAQBmALgUQpSDxCJC5cUrwkTnJEVVmkshzgbDn2BFxlKR5HKDcegWfkSUharpxGmvk0o_kJOWd0wSjlV20DCylkfkBmjBZZTDnNDslsHBVxWuTsmJwgbihlLKViRppnhN52uAUTvK6jBsJ7Z6Oq85FGBETXvkUYdOlqF4bId2WPoR37O1K7FrSPgmvg5-t7C9511pnIQq0HsJEdWt04M67FAQM0eEqOKl0jnP3VOXm9Wb0s7-L10-398nodG8GzPE4E07osEwFJKZK0zDNRptJkPOPUVowbKSGRJoUqKcz0iTCV5UVlTW65zXIxJxf7vVvfffSAQW263rfjScUTPuUk5aQu98r4DtFDpbbeNdoPilE1ITWGqaYwRxrv6aerYfjXqceH1c7_ArpNeR0</recordid><startdate>20200830</startdate><enddate>20200830</enddate><creator>Borgioli, Francesco</creator><creator>Hajdu, David</creator><creator>Insperger, Tamas</creator><creator>Stepan, Gabor</creator><creator>Michiels, Wim</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0877-0080</orcidid><orcidid>https://orcid.org/0000-0002-2947-5910</orcidid></search><sort><creationdate>20200830</creationdate><title>Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems</title><author>Borgioli, Francesco ; Hajdu, David ; Insperger, Tamas ; Stepan, Gabor ; Michiels, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computation</topic><topic>Computer simulation</topic><topic>differential equations</topic><topic>Dynamic stability</topic><topic>dynamical systems</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Operators (mathematics)</topic><topic>optimization</topic><topic>Pendulums</topic><topic>Periodic functions</topic><topic>Robustness (mathematics)</topic><topic>spectral</topic><topic>Spectral methods</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Uncertainty</topic><topic>vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgioli, Francesco</creatorcontrib><creatorcontrib>Hajdu, David</creatorcontrib><creatorcontrib>Insperger, Tamas</creatorcontrib><creatorcontrib>Stepan, Gabor</creatorcontrib><creatorcontrib>Michiels, Wim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgioli, Francesco</au><au>Hajdu, David</au><au>Insperger, Tamas</au><au>Stepan, Gabor</au><au>Michiels, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-08-30</date><risdate>2020</risdate><volume>121</volume><issue>16</issue><spage>3505</spage><epage>3528</epage><pages>3505-3528</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued time‐periodic uncertainties affecting the coefficient matrices, and the presented method is able to fully exploit structure and potential interdependencies among the uncertainties. The assessment of robustness relies on the computation of the pseudospectral radius of the monodromy operator, namely, the largest Floquet multiplier that the system can attain within a given range of perturbations. Instrumental to the adopted novel approach, a solver for the computation of Floquet multipliers is introduced, which results into the solution of a generalized eigenvalue problem which is linear w.r.t. (samples of) the original system matrices. We provide numerical simulations for popular applications modeled by time‐periodic delay systems, such as the inverted pendulum subject to an act‐and‐wait controller, a single‐degree‐of‐freedom milling model and a turning operation with spindle speed variation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6368</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0877-0080</orcidid><orcidid>https://orcid.org/0000-0002-2947-5910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2020-08, Vol.121 (16), p.3505-3528 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2421002668 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Computation Computer simulation differential equations Dynamic stability dynamical systems Eigenvalues Mathematical analysis Mathematical models Matrix methods Operators (mathematics) optimization Pendulums Periodic functions Robustness (mathematics) spectral Spectral methods stability Stability analysis Uncertainty vibrations |
title | Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudospectral%20method%20for%20assessing%20stability%20robustness%20for%20linear%20time%E2%80%90periodic%20delayed%20dynamical%20systems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Borgioli,%20Francesco&rft.date=2020-08-30&rft.volume=121&rft.issue=16&rft.spage=3505&rft.epage=3528&rft.pages=3505-3528&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6368&rft_dat=%3Cproquest_cross%3E2421002668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421002668&rft_id=info:pmid/&rfr_iscdi=true |