Loading…

Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems

Summary The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued ti...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2020-08, Vol.121 (16), p.3505-3528
Main Authors: Borgioli, Francesco, Hajdu, David, Insperger, Tamas, Stepan, Gabor, Michiels, Wim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783
cites cdi_FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783
container_end_page 3528
container_issue 16
container_start_page 3505
container_title International journal for numerical methods in engineering
container_volume 121
creator Borgioli, Francesco
Hajdu, David
Insperger, Tamas
Stepan, Gabor
Michiels, Wim
description Summary The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued time‐periodic uncertainties affecting the coefficient matrices, and the presented method is able to fully exploit structure and potential interdependencies among the uncertainties. The assessment of robustness relies on the computation of the pseudospectral radius of the monodromy operator, namely, the largest Floquet multiplier that the system can attain within a given range of perturbations. Instrumental to the adopted novel approach, a solver for the computation of Floquet multipliers is introduced, which results into the solution of a generalized eigenvalue problem which is linear w.r.t. (samples of) the original system matrices. We provide numerical simulations for popular applications modeled by time‐periodic delay systems, such as the inverted pendulum subject to an act‐and‐wait controller, a single‐degree‐of‐freedom milling model and a turning operation with spindle speed variation.
doi_str_mv 10.1002/nme.6368
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421002668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421002668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783</originalsourceid><addsrcrecordid>eNp10MlOwzAQBmALgUQpSDxCJC5cUrwkTnJEVVmkshzgbDn2BFxlKR5HKDcegWfkSUharpxGmvk0o_kJOWd0wSjlV20DCylkfkBmjBZZTDnNDslsHBVxWuTsmJwgbihlLKViRppnhN52uAUTvK6jBsJ7Z6Oq85FGBETXvkUYdOlqF4bId2WPoR37O1K7FrSPgmvg5-t7C9511pnIQq0HsJEdWt04M67FAQM0eEqOKl0jnP3VOXm9Wb0s7-L10-398nodG8GzPE4E07osEwFJKZK0zDNRptJkPOPUVowbKSGRJoUqKcz0iTCV5UVlTW65zXIxJxf7vVvfffSAQW263rfjScUTPuUk5aQu98r4DtFDpbbeNdoPilE1ITWGqaYwRxrv6aerYfjXqceH1c7_ArpNeR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421002668</pqid></control><display><type>article</type><title>Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Borgioli, Francesco ; Hajdu, David ; Insperger, Tamas ; Stepan, Gabor ; Michiels, Wim</creator><creatorcontrib>Borgioli, Francesco ; Hajdu, David ; Insperger, Tamas ; Stepan, Gabor ; Michiels, Wim</creatorcontrib><description>Summary The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued time‐periodic uncertainties affecting the coefficient matrices, and the presented method is able to fully exploit structure and potential interdependencies among the uncertainties. The assessment of robustness relies on the computation of the pseudospectral radius of the monodromy operator, namely, the largest Floquet multiplier that the system can attain within a given range of perturbations. Instrumental to the adopted novel approach, a solver for the computation of Floquet multipliers is introduced, which results into the solution of a generalized eigenvalue problem which is linear w.r.t. (samples of) the original system matrices. We provide numerical simulations for popular applications modeled by time‐periodic delay systems, such as the inverted pendulum subject to an act‐and‐wait controller, a single‐degree‐of‐freedom milling model and a turning operation with spindle speed variation.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6368</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Computation ; Computer simulation ; differential equations ; Dynamic stability ; dynamical systems ; Eigenvalues ; Mathematical analysis ; Mathematical models ; Matrix methods ; Operators (mathematics) ; optimization ; Pendulums ; Periodic functions ; Robustness (mathematics) ; spectral ; Spectral methods ; stability ; Stability analysis ; Uncertainty ; vibrations</subject><ispartof>International journal for numerical methods in engineering, 2020-08, Vol.121 (16), p.3505-3528</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783</citedby><cites>FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783</cites><orcidid>0000-0002-0877-0080 ; 0000-0002-2947-5910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Borgioli, Francesco</creatorcontrib><creatorcontrib>Hajdu, David</creatorcontrib><creatorcontrib>Insperger, Tamas</creatorcontrib><creatorcontrib>Stepan, Gabor</creatorcontrib><creatorcontrib>Michiels, Wim</creatorcontrib><title>Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems</title><title>International journal for numerical methods in engineering</title><description>Summary The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued time‐periodic uncertainties affecting the coefficient matrices, and the presented method is able to fully exploit structure and potential interdependencies among the uncertainties. The assessment of robustness relies on the computation of the pseudospectral radius of the monodromy operator, namely, the largest Floquet multiplier that the system can attain within a given range of perturbations. Instrumental to the adopted novel approach, a solver for the computation of Floquet multipliers is introduced, which results into the solution of a generalized eigenvalue problem which is linear w.r.t. (samples of) the original system matrices. We provide numerical simulations for popular applications modeled by time‐periodic delay systems, such as the inverted pendulum subject to an act‐and‐wait controller, a single‐degree‐of‐freedom milling model and a turning operation with spindle speed variation.</description><subject>Computation</subject><subject>Computer simulation</subject><subject>differential equations</subject><subject>Dynamic stability</subject><subject>dynamical systems</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Operators (mathematics)</subject><subject>optimization</subject><subject>Pendulums</subject><subject>Periodic functions</subject><subject>Robustness (mathematics)</subject><subject>spectral</subject><subject>Spectral methods</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Uncertainty</subject><subject>vibrations</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10MlOwzAQBmALgUQpSDxCJC5cUrwkTnJEVVmkshzgbDn2BFxlKR5HKDcegWfkSUharpxGmvk0o_kJOWd0wSjlV20DCylkfkBmjBZZTDnNDslsHBVxWuTsmJwgbihlLKViRppnhN52uAUTvK6jBsJ7Z6Oq85FGBETXvkUYdOlqF4bId2WPoR37O1K7FrSPgmvg5-t7C9511pnIQq0HsJEdWt04M67FAQM0eEqOKl0jnP3VOXm9Wb0s7-L10-398nodG8GzPE4E07osEwFJKZK0zDNRptJkPOPUVowbKSGRJoUqKcz0iTCV5UVlTW65zXIxJxf7vVvfffSAQW263rfjScUTPuUk5aQu98r4DtFDpbbeNdoPilE1ITWGqaYwRxrv6aerYfjXqceH1c7_ArpNeR0</recordid><startdate>20200830</startdate><enddate>20200830</enddate><creator>Borgioli, Francesco</creator><creator>Hajdu, David</creator><creator>Insperger, Tamas</creator><creator>Stepan, Gabor</creator><creator>Michiels, Wim</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0877-0080</orcidid><orcidid>https://orcid.org/0000-0002-2947-5910</orcidid></search><sort><creationdate>20200830</creationdate><title>Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems</title><author>Borgioli, Francesco ; Hajdu, David ; Insperger, Tamas ; Stepan, Gabor ; Michiels, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computation</topic><topic>Computer simulation</topic><topic>differential equations</topic><topic>Dynamic stability</topic><topic>dynamical systems</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Operators (mathematics)</topic><topic>optimization</topic><topic>Pendulums</topic><topic>Periodic functions</topic><topic>Robustness (mathematics)</topic><topic>spectral</topic><topic>Spectral methods</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Uncertainty</topic><topic>vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgioli, Francesco</creatorcontrib><creatorcontrib>Hajdu, David</creatorcontrib><creatorcontrib>Insperger, Tamas</creatorcontrib><creatorcontrib>Stepan, Gabor</creatorcontrib><creatorcontrib>Michiels, Wim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgioli, Francesco</au><au>Hajdu, David</au><au>Insperger, Tamas</au><au>Stepan, Gabor</au><au>Michiels, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-08-30</date><risdate>2020</risdate><volume>121</volume><issue>16</issue><spage>3505</spage><epage>3528</epage><pages>3505-3528</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary The article presents a pseudospectral approach to assess the stability robustness of linear time‐periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real‐valued time‐periodic uncertainties affecting the coefficient matrices, and the presented method is able to fully exploit structure and potential interdependencies among the uncertainties. The assessment of robustness relies on the computation of the pseudospectral radius of the monodromy operator, namely, the largest Floquet multiplier that the system can attain within a given range of perturbations. Instrumental to the adopted novel approach, a solver for the computation of Floquet multipliers is introduced, which results into the solution of a generalized eigenvalue problem which is linear w.r.t. (samples of) the original system matrices. We provide numerical simulations for popular applications modeled by time‐periodic delay systems, such as the inverted pendulum subject to an act‐and‐wait controller, a single‐degree‐of‐freedom milling model and a turning operation with spindle speed variation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6368</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0877-0080</orcidid><orcidid>https://orcid.org/0000-0002-2947-5910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2020-08, Vol.121 (16), p.3505-3528
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2421002668
source Wiley-Blackwell Read & Publish Collection
subjects Computation
Computer simulation
differential equations
Dynamic stability
dynamical systems
Eigenvalues
Mathematical analysis
Mathematical models
Matrix methods
Operators (mathematics)
optimization
Pendulums
Periodic functions
Robustness (mathematics)
spectral
Spectral methods
stability
Stability analysis
Uncertainty
vibrations
title Pseudospectral method for assessing stability robustness for linear time‐periodic delayed dynamical systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudospectral%20method%20for%20assessing%20stability%20robustness%20for%20linear%20time%E2%80%90periodic%20delayed%20dynamical%20systems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Borgioli,%20Francesco&rft.date=2020-08-30&rft.volume=121&rft.issue=16&rft.spage=3505&rft.epage=3528&rft.pages=3505-3528&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6368&rft_dat=%3Cproquest_cross%3E2421002668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3278-431aabb43e4b345b873b56c72720df12c66e46c5ef49c01153cfd29fdc8d2d783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421002668&rft_id=info:pmid/&rfr_iscdi=true