Loading…
Wrapping of Microparticles by Floppy Lipid Vesicles
Lipid membranes, the barrier defining living cells and many of their sub-compartments, bind to a wide variety of nano- and micro-meter sized objects. In the presence of strong adhesive forces, membranes can strongly deform and wrap the particles, an essential step in crossing the membrane for a vari...
Saved in:
Published in: | arXiv.org 2020-09 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lipid membranes, the barrier defining living cells and many of their sub-compartments, bind to a wide variety of nano- and micro-meter sized objects. In the presence of strong adhesive forces, membranes can strongly deform and wrap the particles, an essential step in crossing the membrane for a variety of health and disease-related processes. A large body of theoretical and numerical work has focused on identifying the physical properties that underly wrapping. Using a model system of micron-sized colloidal particles and giant unilamellar lipid vesicles with tunable adhesive forces, we measure a wrapping phase diagram and make quantitative comparisons to theoretical models. Our data is consistent with a model of membrane-particle interactions accounting for the adhesive energy per unit area, membrane bending rigidity, particle size, and vesicle radius. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2007.03620 |