Loading…

Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems

Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a diff...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Authors: Lyu, Wenhao, Lu, Youyou, Shu, Jiwu, Zhao, Wei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lyu, Wenhao
Lu, Youyou
Shu, Jiwu
Zhao, Wei
description Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a difficult task requiring profound experience and expertise, due to the immense number of configurable parameters, complex inner dependencies and non-linearsystem behaviors. To overcome these difficulties, we propose an automatic simulation-based approach, Sapphire, to recommend optimal configurations by leveraging machine learning and black-box optimization techniques. We evaluate Sapphire on Ceph. Results show that Sapphire significantly boosts Ceph performance to 2.2x compared to the default configuration.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2421270543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421270543</sourcerecordid><originalsourceid>FETCH-proquest_journals_24212705433</originalsourceid><addsrcrecordid>eNqNis0KgkAYAJcgSMp3WOgsrN9qRrewomNkd9l0tZV2P9ufQ2-fUA_QaRhmZiQCztNkmwEsSOzcwBiDTQF5ziNyqcQ4PpSVO7oPHrXwqqElmk71wU6Chl5lg1pL0361Q0sPynmr7sHLllYereglrd7OS-1WZN6Jp5Pxj0uyPh1v5TkZLb6CdL4eMFgzpRoySKFgecb5f9cHxeY_sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421270543</pqid></control><display><type>article</type><title>Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems</title><source>Publicly Available Content Database</source><creator>Lyu, Wenhao ; Lu, Youyou ; Shu, Jiwu ; Zhao, Wei</creator><creatorcontrib>Lyu, Wenhao ; Lu, Youyou ; Shu, Jiwu ; Zhao, Wei</creatorcontrib><description>Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a difficult task requiring profound experience and expertise, due to the immense number of configurable parameters, complex inner dependencies and non-linearsystem behaviors. To overcome these difficulties, we propose an automatic simulation-based approach, Sapphire, to recommend optimal configurations by leveraging machine learning and black-box optimization techniques. We evaluate Sapphire on Ceph. Results show that Sapphire significantly boosts Ceph performance to 2.2x compared to the default configuration.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Configurations ; Machine learning ; Optimization ; Optimization techniques ; Parameters ; Sapphire ; Storage systems</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2421270543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Lyu, Wenhao</creatorcontrib><creatorcontrib>Lu, Youyou</creatorcontrib><creatorcontrib>Shu, Jiwu</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><title>Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems</title><title>arXiv.org</title><description>Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a difficult task requiring profound experience and expertise, due to the immense number of configurable parameters, complex inner dependencies and non-linearsystem behaviors. To overcome these difficulties, we propose an automatic simulation-based approach, Sapphire, to recommend optimal configurations by leveraging machine learning and black-box optimization techniques. We evaluate Sapphire on Ceph. Results show that Sapphire significantly boosts Ceph performance to 2.2x compared to the default configuration.</description><subject>Configurations</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameters</subject><subject>Sapphire</subject><subject>Storage systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNis0KgkAYAJcgSMp3WOgsrN9qRrewomNkd9l0tZV2P9ufQ2-fUA_QaRhmZiQCztNkmwEsSOzcwBiDTQF5ziNyqcQ4PpSVO7oPHrXwqqElmk71wU6Chl5lg1pL0361Q0sPynmr7sHLllYereglrd7OS-1WZN6Jp5Pxj0uyPh1v5TkZLb6CdL4eMFgzpRoySKFgecb5f9cHxeY_sg</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Lyu, Wenhao</creator><creator>Lu, Youyou</creator><creator>Shu, Jiwu</creator><creator>Zhao, Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200707</creationdate><title>Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems</title><author>Lyu, Wenhao ; Lu, Youyou ; Shu, Jiwu ; Zhao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24212705433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Configurations</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameters</topic><topic>Sapphire</topic><topic>Storage systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Wenhao</creatorcontrib><creatorcontrib>Lu, Youyou</creatorcontrib><creatorcontrib>Shu, Jiwu</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Wenhao</au><au>Lu, Youyou</au><au>Shu, Jiwu</au><au>Zhao, Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems</atitle><jtitle>arXiv.org</jtitle><date>2020-07-07</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a difficult task requiring profound experience and expertise, due to the immense number of configurable parameters, complex inner dependencies and non-linearsystem behaviors. To overcome these difficulties, we propose an automatic simulation-based approach, Sapphire, to recommend optimal configurations by leveraging machine learning and black-box optimization techniques. We evaluate Sapphire on Ceph. Results show that Sapphire significantly boosts Ceph performance to 2.2x compared to the default configuration.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2421270543
source Publicly Available Content Database
subjects Configurations
Machine learning
Optimization
Optimization techniques
Parameters
Sapphire
Storage systems
title Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T13%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sapphire:%20Automatic%20Configuration%20Recommendation%20for%20Distributed%20Storage%20Systems&rft.jtitle=arXiv.org&rft.au=Lyu,%20Wenhao&rft.date=2020-07-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2421270543%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24212705433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421270543&rft_id=info:pmid/&rfr_iscdi=true