Loading…
Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems
Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a diff...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lyu, Wenhao Lu, Youyou Shu, Jiwu Zhao, Wei |
description | Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a difficult task requiring profound experience and expertise, due to the immense number of configurable parameters, complex inner dependencies and non-linearsystem behaviors. To overcome these difficulties, we propose an automatic simulation-based approach, Sapphire, to recommend optimal configurations by leveraging machine learning and black-box optimization techniques. We evaluate Sapphire on Ceph. Results show that Sapphire significantly boosts Ceph performance to 2.2x compared to the default configuration. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2421270543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421270543</sourcerecordid><originalsourceid>FETCH-proquest_journals_24212705433</originalsourceid><addsrcrecordid>eNqNis0KgkAYAJcgSMp3WOgsrN9qRrewomNkd9l0tZV2P9ufQ2-fUA_QaRhmZiQCztNkmwEsSOzcwBiDTQF5ziNyqcQ4PpSVO7oPHrXwqqElmk71wU6Chl5lg1pL0361Q0sPynmr7sHLllYereglrd7OS-1WZN6Jp5Pxj0uyPh1v5TkZLb6CdL4eMFgzpRoySKFgecb5f9cHxeY_sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421270543</pqid></control><display><type>article</type><title>Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems</title><source>Publicly Available Content Database</source><creator>Lyu, Wenhao ; Lu, Youyou ; Shu, Jiwu ; Zhao, Wei</creator><creatorcontrib>Lyu, Wenhao ; Lu, Youyou ; Shu, Jiwu ; Zhao, Wei</creatorcontrib><description>Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a difficult task requiring profound experience and expertise, due to the immense number of configurable parameters, complex inner dependencies and non-linearsystem behaviors. To overcome these difficulties, we propose an automatic simulation-based approach, Sapphire, to recommend optimal configurations by leveraging machine learning and black-box optimization techniques. We evaluate Sapphire on Ceph. Results show that Sapphire significantly boosts Ceph performance to 2.2x compared to the default configuration.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Configurations ; Machine learning ; Optimization ; Optimization techniques ; Parameters ; Sapphire ; Storage systems</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2421270543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Lyu, Wenhao</creatorcontrib><creatorcontrib>Lu, Youyou</creatorcontrib><creatorcontrib>Shu, Jiwu</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><title>Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems</title><title>arXiv.org</title><description>Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a difficult task requiring profound experience and expertise, due to the immense number of configurable parameters, complex inner dependencies and non-linearsystem behaviors. To overcome these difficulties, we propose an automatic simulation-based approach, Sapphire, to recommend optimal configurations by leveraging machine learning and black-box optimization techniques. We evaluate Sapphire on Ceph. Results show that Sapphire significantly boosts Ceph performance to 2.2x compared to the default configuration.</description><subject>Configurations</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameters</subject><subject>Sapphire</subject><subject>Storage systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNis0KgkAYAJcgSMp3WOgsrN9qRrewomNkd9l0tZV2P9ufQ2-fUA_QaRhmZiQCztNkmwEsSOzcwBiDTQF5ziNyqcQ4PpSVO7oPHrXwqqElmk71wU6Chl5lg1pL0361Q0sPynmr7sHLllYereglrd7OS-1WZN6Jp5Pxj0uyPh1v5TkZLb6CdL4eMFgzpRoySKFgecb5f9cHxeY_sg</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Lyu, Wenhao</creator><creator>Lu, Youyou</creator><creator>Shu, Jiwu</creator><creator>Zhao, Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200707</creationdate><title>Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems</title><author>Lyu, Wenhao ; Lu, Youyou ; Shu, Jiwu ; Zhao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24212705433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Configurations</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameters</topic><topic>Sapphire</topic><topic>Storage systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Wenhao</creatorcontrib><creatorcontrib>Lu, Youyou</creatorcontrib><creatorcontrib>Shu, Jiwu</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Wenhao</au><au>Lu, Youyou</au><au>Shu, Jiwu</au><au>Zhao, Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems</atitle><jtitle>arXiv.org</jtitle><date>2020-07-07</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Modern distributed storage systems come with aplethora of configurable parameters that controlmodule behavior and affect system performance. Default settings provided by developers are often suboptimal for specific user cases. Tuning parameters can provide significant performance gains but is a difficult task requiring profound experience and expertise, due to the immense number of configurable parameters, complex inner dependencies and non-linearsystem behaviors. To overcome these difficulties, we propose an automatic simulation-based approach, Sapphire, to recommend optimal configurations by leveraging machine learning and black-box optimization techniques. We evaluate Sapphire on Ceph. Results show that Sapphire significantly boosts Ceph performance to 2.2x compared to the default configuration.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2421270543 |
source | Publicly Available Content Database |
subjects | Configurations Machine learning Optimization Optimization techniques Parameters Sapphire Storage systems |
title | Sapphire: Automatic Configuration Recommendation for Distributed Storage Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T13%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sapphire:%20Automatic%20Configuration%20Recommendation%20for%20Distributed%20Storage%20Systems&rft.jtitle=arXiv.org&rft.au=Lyu,%20Wenhao&rft.date=2020-07-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2421270543%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24212705433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421270543&rft_id=info:pmid/&rfr_iscdi=true |