Loading…

The demand adjustment problem via inexact restoration method

In this work, the demand adjustment problem (DAP) associated with urban traffic planning is studied. The framework for the formulation of the DAP is mathematical programming with equilibrium constraints. In particular, if the optimization program associated with the equilibrium constraint is conside...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2020-09, Vol.39 (3), Article 204
Main Authors: Walpen, Jorgelina, Lotito, Pablo A., Mancinelli, Elina M., Parente, Lisandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-cf91217d3c178270f00f5ab4bcd2af588b6aab0fb3871a146674cfe3a03093703
cites cdi_FETCH-LOGICAL-c319t-cf91217d3c178270f00f5ab4bcd2af588b6aab0fb3871a146674cfe3a03093703
container_end_page
container_issue 3
container_start_page
container_title Computational & applied mathematics
container_volume 39
creator Walpen, Jorgelina
Lotito, Pablo A.
Mancinelli, Elina M.
Parente, Lisandro
description In this work, the demand adjustment problem (DAP) associated with urban traffic planning is studied. The framework for the formulation of the DAP is mathematical programming with equilibrium constraints. In particular, if the optimization program associated with the equilibrium constraint is considered, the DAP results in a bilevel optimization problem. In this approach, the DAP via the inexact restoration method is treated.
doi_str_mv 10.1007/s40314-020-01189-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421513216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421513216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cf91217d3c178270f00f5ab4bcd2af588b6aab0fb3871a146674cfe3a03093703</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gKuC6-h7Sdqk4EYGHYUBN-M6pGnidJi2Y5IR_XujFdy5ept77zscQi4RrhFA3kQBHAUFBhQQVU3LIzJDBZICB3ZMZoxxRXkF_JScxbgF4BKFmJHb9cYVrevN0Bam3R5i6t2Qin0Ym53ri_fOFN3gPoxNRXAxjcGkbhyK3qXN2J6TE2920V383jl5ebhfLx7p6nn5tLhbUcuxTtT6GhnKlluUiknwAL40jWhsy4wvlWoqYxrwDVcSDYqqksJ6x01mr7kEPidX027GejtkDL0dD2HILzUTDEvkDKucYlPKhjHG4Lzeh6434VMj6G9LerKksyX9Y0mXucSnUszh4dWFv-l_Wl_9n2mP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421513216</pqid></control><display><type>article</type><title>The demand adjustment problem via inexact restoration method</title><source>Springer Nature</source><creator>Walpen, Jorgelina ; Lotito, Pablo A. ; Mancinelli, Elina M. ; Parente, Lisandro</creator><creatorcontrib>Walpen, Jorgelina ; Lotito, Pablo A. ; Mancinelli, Elina M. ; Parente, Lisandro</creatorcontrib><description>In this work, the demand adjustment problem (DAP) associated with urban traffic planning is studied. The framework for the formulation of the DAP is mathematical programming with equilibrium constraints. In particular, if the optimization program associated with the equilibrium constraint is considered, the DAP results in a bilevel optimization problem. In this approach, the DAP via the inexact restoration method is treated.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-020-01189-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Optimization ; Restoration ; Traffic planning ; Transportation planning</subject><ispartof>Computational &amp; applied mathematics, 2020-09, Vol.39 (3), Article 204</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cf91217d3c178270f00f5ab4bcd2af588b6aab0fb3871a146674cfe3a03093703</citedby><cites>FETCH-LOGICAL-c319t-cf91217d3c178270f00f5ab4bcd2af588b6aab0fb3871a146674cfe3a03093703</cites><orcidid>0000-0002-7898-1991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Walpen, Jorgelina</creatorcontrib><creatorcontrib>Lotito, Pablo A.</creatorcontrib><creatorcontrib>Mancinelli, Elina M.</creatorcontrib><creatorcontrib>Parente, Lisandro</creatorcontrib><title>The demand adjustment problem via inexact restoration method</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this work, the demand adjustment problem (DAP) associated with urban traffic planning is studied. The framework for the formulation of the DAP is mathematical programming with equilibrium constraints. In particular, if the optimization program associated with the equilibrium constraint is considered, the DAP results in a bilevel optimization problem. In this approach, the DAP via the inexact restoration method is treated.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Restoration</subject><subject>Traffic planning</subject><subject>Transportation planning</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI7-gKuC6-h7Sdqk4EYGHYUBN-M6pGnidJi2Y5IR_XujFdy5ept77zscQi4RrhFA3kQBHAUFBhQQVU3LIzJDBZICB3ZMZoxxRXkF_JScxbgF4BKFmJHb9cYVrevN0Bam3R5i6t2Qin0Ym53ri_fOFN3gPoxNRXAxjcGkbhyK3qXN2J6TE2920V383jl5ebhfLx7p6nn5tLhbUcuxTtT6GhnKlluUiknwAL40jWhsy4wvlWoqYxrwDVcSDYqqksJ6x01mr7kEPidX027GejtkDL0dD2HILzUTDEvkDKucYlPKhjHG4Lzeh6434VMj6G9LerKksyX9Y0mXucSnUszh4dWFv-l_Wl_9n2mP</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Walpen, Jorgelina</creator><creator>Lotito, Pablo A.</creator><creator>Mancinelli, Elina M.</creator><creator>Parente, Lisandro</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7898-1991</orcidid></search><sort><creationdate>20200901</creationdate><title>The demand adjustment problem via inexact restoration method</title><author>Walpen, Jorgelina ; Lotito, Pablo A. ; Mancinelli, Elina M. ; Parente, Lisandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cf91217d3c178270f00f5ab4bcd2af588b6aab0fb3871a146674cfe3a03093703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Restoration</topic><topic>Traffic planning</topic><topic>Transportation planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walpen, Jorgelina</creatorcontrib><creatorcontrib>Lotito, Pablo A.</creatorcontrib><creatorcontrib>Mancinelli, Elina M.</creatorcontrib><creatorcontrib>Parente, Lisandro</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walpen, Jorgelina</au><au>Lotito, Pablo A.</au><au>Mancinelli, Elina M.</au><au>Parente, Lisandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The demand adjustment problem via inexact restoration method</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>39</volume><issue>3</issue><artnum>204</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this work, the demand adjustment problem (DAP) associated with urban traffic planning is studied. The framework for the formulation of the DAP is mathematical programming with equilibrium constraints. In particular, if the optimization program associated with the equilibrium constraint is considered, the DAP results in a bilevel optimization problem. In this approach, the DAP via the inexact restoration method is treated.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-020-01189-5</doi><orcidid>https://orcid.org/0000-0002-7898-1991</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2020-09, Vol.39 (3), Article 204
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2421513216
source Springer Nature
subjects Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematical programming
Mathematics
Mathematics and Statistics
Optimization
Restoration
Traffic planning
Transportation planning
title The demand adjustment problem via inexact restoration method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20demand%20adjustment%20problem%20via%20inexact%20restoration%20method&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Walpen,%20Jorgelina&rft.date=2020-09-01&rft.volume=39&rft.issue=3&rft.artnum=204&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-020-01189-5&rft_dat=%3Cproquest_cross%3E2421513216%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-cf91217d3c178270f00f5ab4bcd2af588b6aab0fb3871a146674cfe3a03093703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421513216&rft_id=info:pmid/&rfr_iscdi=true