Loading…

A Real-Time Hybrid Fire Simulation Method Based on Dynamic Relaxation and Partitioned Time Integration

AbstractThe use of simplified numerical substructures in hybrid fire simulation is clearly advantageous as long as the resulting simulation accuracy is sufficient. However, excluding geometrical and material nonlinearities from the numerical substructure might make a significant difference in intern...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering mechanics 2020-09, Vol.146 (9)
Main Authors: Abbiati, Giuseppe, Covi, Patrick, Tondini, Nicola, Bursi, Oreste S, Stojadinović, Božidar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a323t-3618c899b58a089aa0d488c47b75bb006681281394dce9c387a75b6038d97913
cites cdi_FETCH-LOGICAL-a323t-3618c899b58a089aa0d488c47b75bb006681281394dce9c387a75b6038d97913
container_end_page
container_issue 9
container_start_page
container_title Journal of engineering mechanics
container_volume 146
creator Abbiati, Giuseppe
Covi, Patrick
Tondini, Nicola
Bursi, Oreste S
Stojadinović, Božidar
description AbstractThe use of simplified numerical substructures in hybrid fire simulation is clearly advantageous as long as the resulting simulation accuracy is sufficient. However, excluding geometrical and material nonlinearities from the numerical substructure might make a significant difference in internal force redistribution and reduce the simulation accuracy beyond acceptable levels. Also, materials at a high temperature very often exhibit time-dependent behavior, including strain-rate dependency, high-temperature creep, and stress relaxation, which prohibit the use of extended testing time scales. This standpoint motivated the development of the real-time hybrid fire simulation method presented in this paper. Dynamic relaxation is proposed to solve the static response of the hybrid numerical-experimental fire simulation. As an equivalent dynamic solution method, dynamic relaxation allows for coupling substructure equations of motion by using a partitioned time integration approach. Minimal data exchange between substructures and negligible computational overhead plus ease of reusability of verified finite-element software makes the proposed algorithm suitable for coordinating real-time hybrid fire simulations. The hybrid fire simulation of a virtual steel frame case study is reported as a validation example.
doi_str_mv 10.1061/(ASCE)EM.1943-7889.0001826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421631197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421631197</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-3618c899b58a089aa0d488c47b75bb006681281394dce9c387a75b6038d97913</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhujiYj-h0Zv9GLYrqNrvUMcQgLRCPfN2Va0ZB_YjkT-vR1DvfLq5Jw-79vkQeiakgElnN7fjpbj5C5ZDKiMWBALIQeEECpCfoJ6v7dT1CMxY4FkUp6jC-c2nom45D20HuE3DUWwMqXG031qTY4nxmq8NOWugMbUFV7o5qPO8SM4nWO_P-0rKE3mgwV8dQhUOX4F25h289ShblY1-t0egEt0tobC6avj7KPVJFmNp8H85Xk2Hs0DYCFrAsapyISU6VAAERKA5JEQWRSn8TBNCeFc0FBQJqM80zJjIgb_wAkTuYwlZX1009Vubf25065Rm3pnK_-jCqOQckapjD310FGZrZ2zeq221pRg94oS1WpVqtWqkoVqFapWoTpq9WHehcFl-q_-J_l_8Bur-nrd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421631197</pqid></control><display><type>article</type><title>A Real-Time Hybrid Fire Simulation Method Based on Dynamic Relaxation and Partitioned Time Integration</title><source>AUTh Library subscriptions: American Society of Civil Engineers</source><creator>Abbiati, Giuseppe ; Covi, Patrick ; Tondini, Nicola ; Bursi, Oreste S ; Stojadinović, Božidar</creator><creatorcontrib>Abbiati, Giuseppe ; Covi, Patrick ; Tondini, Nicola ; Bursi, Oreste S ; Stojadinović, Božidar</creatorcontrib><description>AbstractThe use of simplified numerical substructures in hybrid fire simulation is clearly advantageous as long as the resulting simulation accuracy is sufficient. However, excluding geometrical and material nonlinearities from the numerical substructure might make a significant difference in internal force redistribution and reduce the simulation accuracy beyond acceptable levels. Also, materials at a high temperature very often exhibit time-dependent behavior, including strain-rate dependency, high-temperature creep, and stress relaxation, which prohibit the use of extended testing time scales. This standpoint motivated the development of the real-time hybrid fire simulation method presented in this paper. Dynamic relaxation is proposed to solve the static response of the hybrid numerical-experimental fire simulation. As an equivalent dynamic solution method, dynamic relaxation allows for coupling substructure equations of motion by using a partitioned time integration approach. Minimal data exchange between substructures and negligible computational overhead plus ease of reusability of verified finite-element software makes the proposed algorithm suitable for coordinating real-time hybrid fire simulations. The hybrid fire simulation of a virtual steel frame case study is reported as a validation example.</description><identifier>ISSN: 0733-9399</identifier><identifier>EISSN: 1943-7889</identifier><identifier>DOI: 10.1061/(ASCE)EM.1943-7889.0001826</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Algorithms ; Computer simulation ; Creep (materials) ; Data exchange ; Equations of motion ; Finite element method ; Geometric accuracy ; High temperature ; Internal forces ; Real time ; Simulation ; Software reuse ; Steel frames ; Strain rate ; Stress relaxation ; Substructures ; Technical Papers ; Temperature dependence ; Testing time ; Time dependence ; Time integration</subject><ispartof>Journal of engineering mechanics, 2020-09, Vol.146 (9)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-3618c899b58a089aa0d488c47b75bb006681281394dce9c387a75b6038d97913</citedby><cites>FETCH-LOGICAL-a323t-3618c899b58a089aa0d488c47b75bb006681281394dce9c387a75b6038d97913</cites><orcidid>0000-0002-1713-1977 ; 0000-0002-5048-8505 ; 0000-0002-0570-4061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EM.1943-7889.0001826$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EM.1943-7889.0001826$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3250,10066,27922,27923,75961,75969</link.rule.ids></links><search><creatorcontrib>Abbiati, Giuseppe</creatorcontrib><creatorcontrib>Covi, Patrick</creatorcontrib><creatorcontrib>Tondini, Nicola</creatorcontrib><creatorcontrib>Bursi, Oreste S</creatorcontrib><creatorcontrib>Stojadinović, Božidar</creatorcontrib><title>A Real-Time Hybrid Fire Simulation Method Based on Dynamic Relaxation and Partitioned Time Integration</title><title>Journal of engineering mechanics</title><description>AbstractThe use of simplified numerical substructures in hybrid fire simulation is clearly advantageous as long as the resulting simulation accuracy is sufficient. However, excluding geometrical and material nonlinearities from the numerical substructure might make a significant difference in internal force redistribution and reduce the simulation accuracy beyond acceptable levels. Also, materials at a high temperature very often exhibit time-dependent behavior, including strain-rate dependency, high-temperature creep, and stress relaxation, which prohibit the use of extended testing time scales. This standpoint motivated the development of the real-time hybrid fire simulation method presented in this paper. Dynamic relaxation is proposed to solve the static response of the hybrid numerical-experimental fire simulation. As an equivalent dynamic solution method, dynamic relaxation allows for coupling substructure equations of motion by using a partitioned time integration approach. Minimal data exchange between substructures and negligible computational overhead plus ease of reusability of verified finite-element software makes the proposed algorithm suitable for coordinating real-time hybrid fire simulations. The hybrid fire simulation of a virtual steel frame case study is reported as a validation example.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Creep (materials)</subject><subject>Data exchange</subject><subject>Equations of motion</subject><subject>Finite element method</subject><subject>Geometric accuracy</subject><subject>High temperature</subject><subject>Internal forces</subject><subject>Real time</subject><subject>Simulation</subject><subject>Software reuse</subject><subject>Steel frames</subject><subject>Strain rate</subject><subject>Stress relaxation</subject><subject>Substructures</subject><subject>Technical Papers</subject><subject>Temperature dependence</subject><subject>Testing time</subject><subject>Time dependence</subject><subject>Time integration</subject><issn>0733-9399</issn><issn>1943-7889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1PwjAUhhujiYj-h0Zv9GLYrqNrvUMcQgLRCPfN2Va0ZB_YjkT-vR1DvfLq5Jw-79vkQeiakgElnN7fjpbj5C5ZDKiMWBALIQeEECpCfoJ6v7dT1CMxY4FkUp6jC-c2nom45D20HuE3DUWwMqXG031qTY4nxmq8NOWugMbUFV7o5qPO8SM4nWO_P-0rKE3mgwV8dQhUOX4F25h289ShblY1-t0egEt0tobC6avj7KPVJFmNp8H85Xk2Hs0DYCFrAsapyISU6VAAERKA5JEQWRSn8TBNCeFc0FBQJqM80zJjIgb_wAkTuYwlZX1009Vubf25065Rm3pnK_-jCqOQckapjD310FGZrZ2zeq221pRg94oS1WpVqtWqkoVqFapWoTpq9WHehcFl-q_-J_l_8Bur-nrd</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Abbiati, Giuseppe</creator><creator>Covi, Patrick</creator><creator>Tondini, Nicola</creator><creator>Bursi, Oreste S</creator><creator>Stojadinović, Božidar</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1713-1977</orcidid><orcidid>https://orcid.org/0000-0002-5048-8505</orcidid><orcidid>https://orcid.org/0000-0002-0570-4061</orcidid></search><sort><creationdate>20200901</creationdate><title>A Real-Time Hybrid Fire Simulation Method Based on Dynamic Relaxation and Partitioned Time Integration</title><author>Abbiati, Giuseppe ; Covi, Patrick ; Tondini, Nicola ; Bursi, Oreste S ; Stojadinović, Božidar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-3618c899b58a089aa0d488c47b75bb006681281394dce9c387a75b6038d97913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Creep (materials)</topic><topic>Data exchange</topic><topic>Equations of motion</topic><topic>Finite element method</topic><topic>Geometric accuracy</topic><topic>High temperature</topic><topic>Internal forces</topic><topic>Real time</topic><topic>Simulation</topic><topic>Software reuse</topic><topic>Steel frames</topic><topic>Strain rate</topic><topic>Stress relaxation</topic><topic>Substructures</topic><topic>Technical Papers</topic><topic>Temperature dependence</topic><topic>Testing time</topic><topic>Time dependence</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbiati, Giuseppe</creatorcontrib><creatorcontrib>Covi, Patrick</creatorcontrib><creatorcontrib>Tondini, Nicola</creatorcontrib><creatorcontrib>Bursi, Oreste S</creatorcontrib><creatorcontrib>Stojadinović, Božidar</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbiati, Giuseppe</au><au>Covi, Patrick</au><au>Tondini, Nicola</au><au>Bursi, Oreste S</au><au>Stojadinović, Božidar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Real-Time Hybrid Fire Simulation Method Based on Dynamic Relaxation and Partitioned Time Integration</atitle><jtitle>Journal of engineering mechanics</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>146</volume><issue>9</issue><issn>0733-9399</issn><eissn>1943-7889</eissn><abstract>AbstractThe use of simplified numerical substructures in hybrid fire simulation is clearly advantageous as long as the resulting simulation accuracy is sufficient. However, excluding geometrical and material nonlinearities from the numerical substructure might make a significant difference in internal force redistribution and reduce the simulation accuracy beyond acceptable levels. Also, materials at a high temperature very often exhibit time-dependent behavior, including strain-rate dependency, high-temperature creep, and stress relaxation, which prohibit the use of extended testing time scales. This standpoint motivated the development of the real-time hybrid fire simulation method presented in this paper. Dynamic relaxation is proposed to solve the static response of the hybrid numerical-experimental fire simulation. As an equivalent dynamic solution method, dynamic relaxation allows for coupling substructure equations of motion by using a partitioned time integration approach. Minimal data exchange between substructures and negligible computational overhead plus ease of reusability of verified finite-element software makes the proposed algorithm suitable for coordinating real-time hybrid fire simulations. The hybrid fire simulation of a virtual steel frame case study is reported as a validation example.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EM.1943-7889.0001826</doi><orcidid>https://orcid.org/0000-0002-1713-1977</orcidid><orcidid>https://orcid.org/0000-0002-5048-8505</orcidid><orcidid>https://orcid.org/0000-0002-0570-4061</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-9399
ispartof Journal of engineering mechanics, 2020-09, Vol.146 (9)
issn 0733-9399
1943-7889
language eng
recordid cdi_proquest_journals_2421631197
source AUTh Library subscriptions: American Society of Civil Engineers
subjects Algorithms
Computer simulation
Creep (materials)
Data exchange
Equations of motion
Finite element method
Geometric accuracy
High temperature
Internal forces
Real time
Simulation
Software reuse
Steel frames
Strain rate
Stress relaxation
Substructures
Technical Papers
Temperature dependence
Testing time
Time dependence
Time integration
title A Real-Time Hybrid Fire Simulation Method Based on Dynamic Relaxation and Partitioned Time Integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Real-Time%20Hybrid%20Fire%20Simulation%20Method%20Based%20on%20Dynamic%20Relaxation%20and%20Partitioned%20Time%20Integration&rft.jtitle=Journal%20of%20engineering%20mechanics&rft.au=Abbiati,%20Giuseppe&rft.date=2020-09-01&rft.volume=146&rft.issue=9&rft.issn=0733-9399&rft.eissn=1943-7889&rft_id=info:doi/10.1061/(ASCE)EM.1943-7889.0001826&rft_dat=%3Cproquest_cross%3E2421631197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a323t-3618c899b58a089aa0d488c47b75bb006681281394dce9c387a75b6038d97913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421631197&rft_id=info:pmid/&rfr_iscdi=true