Loading…
London superconductivity approach in a time-dependent background
The main goal of this paper is to obtain the exact quantum solutions for charge space in a superconductor with time-dependent parameters using the London approach. We introduce a new quantization scheme for the charge inside a superconductor based on the Lewis and Riesenfeld invariant operator metho...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aguiar, Vanderley Nascimento, João P G Guedes, Ilde Costa Filho, Raimundo N |
description | The main goal of this paper is to obtain the exact quantum solutions for charge space in a superconductor with time-dependent parameters using the London approach. We introduce a new quantization scheme for the charge inside a superconductor based on the Lewis and Riesenfeld invariant operator method. From the wave-functions obtained, we calculated the time-dependent uncertainties and the mean energy of the system. Information measures were also obtained, such as Shannon entropy and complexity. The later is always time-independent and also does not depend on conductivity. The others quantities are written in terms of a time-dependent function, \r{ho}(t), c-number quantity satisfying a nonlinear differential equation. |
doi_str_mv | 10.48550/arxiv.2007.04230 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2421648930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421648930</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-25b68c6e4e5b6c57eed30245278be974c57c5a6e47e344dd13aadbd1eda96ceb3</originalsourceid><addsrcrecordid>eNotjktLxEAQhAdBcFn3B3gb8JzY6XklN2XxBQEve186M61m1UnMJIv-ewfcU31UQVUJcVVBqWtj4Iamn_5YIoArQaOCM7FCpaqi1ogXYpPSAQDQOjRGrcRtO8QwRJmWkSefefFzf-znX0njOA3k32UfJcm5_-Ii8MgxcJxlR_7jbRqWGC7F-St9Jt6cdC12D_e77VPRvjw-b-_aggxCgaaztbesOYM3jjkoQG3Q1R03TmfLG8q5Y6V1CJUiCl2oOFBjPXdqLa7_a_Op74XTvD8MyxTz4h41VlbXjQL1BwKoTDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421648930</pqid></control><display><type>article</type><title>London superconductivity approach in a time-dependent background</title><source>Publicly Available Content (ProQuest)</source><creator>Aguiar, Vanderley ; Nascimento, João P G ; Guedes, Ilde ; Costa Filho, Raimundo N</creator><creatorcontrib>Aguiar, Vanderley ; Nascimento, João P G ; Guedes, Ilde ; Costa Filho, Raimundo N</creatorcontrib><description>The main goal of this paper is to obtain the exact quantum solutions for charge space in a superconductor with time-dependent parameters using the London approach. We introduce a new quantization scheme for the charge inside a superconductor based on the Lewis and Riesenfeld invariant operator method. From the wave-functions obtained, we calculated the time-dependent uncertainties and the mean energy of the system. Information measures were also obtained, such as Shannon entropy and complexity. The later is always time-independent and also does not depend on conductivity. The others quantities are written in terms of a time-dependent function, \r{ho}(t), c-number quantity satisfying a nonlinear differential equation.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2007.04230</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Entropy (Information theory) ; Mathematical analysis ; Nonlinear differential equations ; Operators (mathematics) ; Superconductivity ; Time dependence</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2421648930?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Aguiar, Vanderley</creatorcontrib><creatorcontrib>Nascimento, João P G</creatorcontrib><creatorcontrib>Guedes, Ilde</creatorcontrib><creatorcontrib>Costa Filho, Raimundo N</creatorcontrib><title>London superconductivity approach in a time-dependent background</title><title>arXiv.org</title><description>The main goal of this paper is to obtain the exact quantum solutions for charge space in a superconductor with time-dependent parameters using the London approach. We introduce a new quantization scheme for the charge inside a superconductor based on the Lewis and Riesenfeld invariant operator method. From the wave-functions obtained, we calculated the time-dependent uncertainties and the mean energy of the system. Information measures were also obtained, such as Shannon entropy and complexity. The later is always time-independent and also does not depend on conductivity. The others quantities are written in terms of a time-dependent function, \r{ho}(t), c-number quantity satisfying a nonlinear differential equation.</description><subject>Entropy (Information theory)</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Operators (mathematics)</subject><subject>Superconductivity</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLxEAQhAdBcFn3B3gb8JzY6XklN2XxBQEve186M61m1UnMJIv-ewfcU31UQVUJcVVBqWtj4Iamn_5YIoArQaOCM7FCpaqi1ogXYpPSAQDQOjRGrcRtO8QwRJmWkSefefFzf-znX0njOA3k32UfJcm5_-Ii8MgxcJxlR_7jbRqWGC7F-St9Jt6cdC12D_e77VPRvjw-b-_aggxCgaaztbesOYM3jjkoQG3Q1R03TmfLG8q5Y6V1CJUiCl2oOFBjPXdqLa7_a_Op74XTvD8MyxTz4h41VlbXjQL1BwKoTDM</recordid><startdate>20200708</startdate><enddate>20200708</enddate><creator>Aguiar, Vanderley</creator><creator>Nascimento, João P G</creator><creator>Guedes, Ilde</creator><creator>Costa Filho, Raimundo N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200708</creationdate><title>London superconductivity approach in a time-dependent background</title><author>Aguiar, Vanderley ; Nascimento, João P G ; Guedes, Ilde ; Costa Filho, Raimundo N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-25b68c6e4e5b6c57eed30245278be974c57c5a6e47e344dd13aadbd1eda96ceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Entropy (Information theory)</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Operators (mathematics)</topic><topic>Superconductivity</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Aguiar, Vanderley</creatorcontrib><creatorcontrib>Nascimento, João P G</creatorcontrib><creatorcontrib>Guedes, Ilde</creatorcontrib><creatorcontrib>Costa Filho, Raimundo N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguiar, Vanderley</au><au>Nascimento, João P G</au><au>Guedes, Ilde</au><au>Costa Filho, Raimundo N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>London superconductivity approach in a time-dependent background</atitle><jtitle>arXiv.org</jtitle><date>2020-07-08</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The main goal of this paper is to obtain the exact quantum solutions for charge space in a superconductor with time-dependent parameters using the London approach. We introduce a new quantization scheme for the charge inside a superconductor based on the Lewis and Riesenfeld invariant operator method. From the wave-functions obtained, we calculated the time-dependent uncertainties and the mean energy of the system. Information measures were also obtained, such as Shannon entropy and complexity. The later is always time-independent and also does not depend on conductivity. The others quantities are written in terms of a time-dependent function, \r{ho}(t), c-number quantity satisfying a nonlinear differential equation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2007.04230</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2421648930 |
source | Publicly Available Content (ProQuest) |
subjects | Entropy (Information theory) Mathematical analysis Nonlinear differential equations Operators (mathematics) Superconductivity Time dependence |
title | London superconductivity approach in a time-dependent background |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=London%20superconductivity%20approach%20in%20a%20time-dependent%20background&rft.jtitle=arXiv.org&rft.au=Aguiar,%20Vanderley&rft.date=2020-07-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2007.04230&rft_dat=%3Cproquest%3E2421648930%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-25b68c6e4e5b6c57eed30245278be974c57c5a6e47e344dd13aadbd1eda96ceb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421648930&rft_id=info:pmid/&rfr_iscdi=true |