Loading…
Low temperature stimulates spatial molecular reprogramming of the Arabidopsis seed germination programme
The timing of the germination of seeds is highly responsive to inputs from the environment. Temperature plays a key role in the control of germination, with low temperatures acting to stimulate this developmental transition in many species. In Arabidopsis, extensive gene expression changes have been...
Saved in:
Published in: | Seed science research 2020-03, Vol.30 (1), p.2-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The timing of the germination of seeds is highly responsive to inputs from the environment. Temperature plays a key role in the control of germination, with low temperatures acting to stimulate this developmental transition in many species. In Arabidopsis, extensive gene expression changes have been reported at the whole seed level in response to cold, while much less is known about their spatial distribution across the diverse cell types of the embryo. In this study we examined the spatiotemporal patterns of promoter activity and protein abundance for key gibberellic acid (GA) and abscisic acid (ABA) factors which regulate the decision to germinate both during a time course of germination and in response to cold. Low temperature stimulated the spatial relocalization of these factors to the vasculature. The response of these seeds to dormancy-breaking stratification treatments therefore stimulates the distribution of both positive (GA) and negatively acting (ABA) components to this same cell type. This altered spatial pattern persisted following the transfer of seeds to 22°C, as well as after their rehydration, indicating that this alteration is persistent. These observations suggest that the vasculature plays a role in the low temperature-mediated stimulation of germination in this species, while novel cell types are recruited to promote germination in response to stratification. |
---|---|
ISSN: | 0960-2585 1475-2735 |
DOI: | 10.1017/S0960258519000266 |