Loading…

Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network

This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is em...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors letters 2020-08, Vol.4 (8), p.1-4
Main Authors: Ganguly, Biswarup, Ghosal, Avishek, Das, Anirbed, Das, Debanjan, Chatterjee, Debanjan, Rakshit, Debmalya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3
cites cdi_FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3
container_end_page 4
container_issue 8
container_start_page 1
container_title IEEE sensors letters
container_volume 4
creator Ganguly, Biswarup
Ghosal, Avishek
Das, Anirbed
Das, Debanjan
Chatterjee, Debanjan
Rakshit, Debmalya
description This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is employed, where a unidirectionally processed multifractal detrended fluctuation analysis is used to extract suitable features. The online available ECG signals are examined using multifractal parameters to study its nonlinear, stochastic, and complex fluctuations. A feature set comprising of ten features has been extracted from the segmented ECG beats followed by feeding to a single layer bi-LSTM network. Experimental results reveal that the feature-based bi-LSTM network outperforms the state-of-the-art DL methods compared on the same dataset. The proposed algorithm is a generic one and can be used for any computer-aided diagnosis of cardiovascular diseases.
doi_str_mv 10.1109/LSENS.2020.3006756
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2422017606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9133313</ieee_id><sourcerecordid>2422017606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGEwnyB_Syiefi7Ee77ZEgIEnFQ-HcLNstFGkXd7cx-OstHzEeJjN5876TmQehRwJDQiB5SbPJIhtSoDBkAJEIoxvUo1yEAeGC3v6b79HAuR0AkJgKYNBDP6PWm1p6XeBX7bXylWmwbAo83kvnqrJS8iyZEo-s3R79tq4knlpT48l4hrNq08i9wytXNRs81dK3VgfzpmhVtzE1nZhtjfXBUtsav-va2CNeaP9t7OcDuiu7rB5cex-tppPl-C1IP2bz8SgNFE1CH5QhoSLRisREFjwWJY80h2StuGKse5bHXBSCQsHiNYQJBSU4L1mUhIKyRCrWR8-XvQdrvlrtfL4zrT2dnVNOKRARQdS56MWlrHHO6jI_2KqW9pgTyE-Y8zPm_IQ5v2LuQk-XUKW1_gskhDHW1S9nfXgm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422017606</pqid></control><display><type>article</type><title>Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ganguly, Biswarup ; Ghosal, Avishek ; Das, Anirbed ; Das, Debanjan ; Chatterjee, Debanjan ; Rakshit, Debmalya</creator><creatorcontrib>Ganguly, Biswarup ; Ghosal, Avishek ; Das, Anirbed ; Das, Debanjan ; Chatterjee, Debanjan ; Rakshit, Debmalya</creatorcontrib><description>This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is employed, where a unidirectionally processed multifractal detrended fluctuation analysis is used to extract suitable features. The online available ECG signals are examined using multifractal parameters to study its nonlinear, stochastic, and complex fluctuations. A feature set comprising of ten features has been extracted from the segmented ECG beats followed by feeding to a single layer bi-LSTM network. Experimental results reveal that the feature-based bi-LSTM network outperforms the state-of-the-art DL methods compared on the same dataset. The proposed algorithm is a generic one and can be used for any computer-aided diagnosis of cardiovascular diseases.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2020.3006756</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Arrhythmia ; automated detection ; Automation ; Cardiac arrhythmia ; Classification ; deep learning (DL) ; Electrocardiography ; Feature extraction ; Fractals ; Heart beat ; Machine learning ; Measurement ; Sensor applications ; Short term ; signal processing ; Testing ; Training</subject><ispartof>IEEE sensors letters, 2020-08, Vol.4 (8), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3</citedby><cites>FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3</cites><orcidid>0000-0002-7171-8269 ; 0000-0002-8348-8763 ; 0000-0001-8704-4361 ; 0000-0001-6855-5246 ; 0000-0001-5331-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9133313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ganguly, Biswarup</creatorcontrib><creatorcontrib>Ghosal, Avishek</creatorcontrib><creatorcontrib>Das, Anirbed</creatorcontrib><creatorcontrib>Das, Debanjan</creatorcontrib><creatorcontrib>Chatterjee, Debanjan</creatorcontrib><creatorcontrib>Rakshit, Debmalya</creatorcontrib><title>Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is employed, where a unidirectionally processed multifractal detrended fluctuation analysis is used to extract suitable features. The online available ECG signals are examined using multifractal parameters to study its nonlinear, stochastic, and complex fluctuations. A feature set comprising of ten features has been extracted from the segmented ECG beats followed by feeding to a single layer bi-LSTM network. Experimental results reveal that the feature-based bi-LSTM network outperforms the state-of-the-art DL methods compared on the same dataset. The proposed algorithm is a generic one and can be used for any computer-aided diagnosis of cardiovascular diseases.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>automated detection</subject><subject>Automation</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>deep learning (DL)</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Fractals</subject><subject>Heart beat</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Sensor applications</subject><subject>Short term</subject><subject>signal processing</subject><subject>Testing</subject><subject>Training</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwkAQhjdGEwnyB_Syiefi7Ee77ZEgIEnFQ-HcLNstFGkXd7cx-OstHzEeJjN5876TmQehRwJDQiB5SbPJIhtSoDBkAJEIoxvUo1yEAeGC3v6b79HAuR0AkJgKYNBDP6PWm1p6XeBX7bXylWmwbAo83kvnqrJS8iyZEo-s3R79tq4knlpT48l4hrNq08i9wytXNRs81dK3VgfzpmhVtzE1nZhtjfXBUtsav-va2CNeaP9t7OcDuiu7rB5cex-tppPl-C1IP2bz8SgNFE1CH5QhoSLRisREFjwWJY80h2StuGKse5bHXBSCQsHiNYQJBSU4L1mUhIKyRCrWR8-XvQdrvlrtfL4zrT2dnVNOKRARQdS56MWlrHHO6jI_2KqW9pgTyE-Y8zPm_IQ5v2LuQk-XUKW1_gskhDHW1S9nfXgm</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ganguly, Biswarup</creator><creator>Ghosal, Avishek</creator><creator>Das, Anirbed</creator><creator>Das, Debanjan</creator><creator>Chatterjee, Debanjan</creator><creator>Rakshit, Debmalya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7171-8269</orcidid><orcidid>https://orcid.org/0000-0002-8348-8763</orcidid><orcidid>https://orcid.org/0000-0001-8704-4361</orcidid><orcidid>https://orcid.org/0000-0001-6855-5246</orcidid><orcidid>https://orcid.org/0000-0001-5331-0799</orcidid></search><sort><creationdate>20200801</creationdate><title>Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network</title><author>Ganguly, Biswarup ; Ghosal, Avishek ; Das, Anirbed ; Das, Debanjan ; Chatterjee, Debanjan ; Rakshit, Debmalya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>automated detection</topic><topic>Automation</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>deep learning (DL)</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Fractals</topic><topic>Heart beat</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Sensor applications</topic><topic>Short term</topic><topic>signal processing</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganguly, Biswarup</creatorcontrib><creatorcontrib>Ghosal, Avishek</creatorcontrib><creatorcontrib>Das, Anirbed</creatorcontrib><creatorcontrib>Das, Debanjan</creatorcontrib><creatorcontrib>Chatterjee, Debanjan</creatorcontrib><creatorcontrib>Rakshit, Debmalya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganguly, Biswarup</au><au>Ghosal, Avishek</au><au>Das, Anirbed</au><au>Das, Debanjan</au><au>Chatterjee, Debanjan</au><au>Rakshit, Debmalya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>4</volume><issue>8</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is employed, where a unidirectionally processed multifractal detrended fluctuation analysis is used to extract suitable features. The online available ECG signals are examined using multifractal parameters to study its nonlinear, stochastic, and complex fluctuations. A feature set comprising of ten features has been extracted from the segmented ECG beats followed by feeding to a single layer bi-LSTM network. Experimental results reveal that the feature-based bi-LSTM network outperforms the state-of-the-art DL methods compared on the same dataset. The proposed algorithm is a generic one and can be used for any computer-aided diagnosis of cardiovascular diseases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2020.3006756</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7171-8269</orcidid><orcidid>https://orcid.org/0000-0002-8348-8763</orcidid><orcidid>https://orcid.org/0000-0001-8704-4361</orcidid><orcidid>https://orcid.org/0000-0001-6855-5246</orcidid><orcidid>https://orcid.org/0000-0001-5331-0799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2020-08, Vol.4 (8), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_proquest_journals_2422017606
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Arrhythmia
automated detection
Automation
Cardiac arrhythmia
Classification
deep learning (DL)
Electrocardiography
Feature extraction
Fractals
Heart beat
Machine learning
Measurement
Sensor applications
Short term
signal processing
Testing
Training
title Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Detection%20and%20Classification%20of%20Arrhythmia%20From%20ECG%20Signals%20Using%20Feature-Induced%20Long%20Short-Term%20Memory%20Network&rft.jtitle=IEEE%20sensors%20letters&rft.au=Ganguly,%20Biswarup&rft.date=2020-08-01&rft.volume=4&rft.issue=8&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2020.3006756&rft_dat=%3Cproquest_ieee_%3E2422017606%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2422017606&rft_id=info:pmid/&rft_ieee_id=9133313&rfr_iscdi=true