Loading…
Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network
This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is em...
Saved in:
Published in: | IEEE sensors letters 2020-08, Vol.4 (8), p.1-4 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3 |
container_end_page | 4 |
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 4 |
creator | Ganguly, Biswarup Ghosal, Avishek Das, Anirbed Das, Debanjan Chatterjee, Debanjan Rakshit, Debmalya |
description | This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is employed, where a unidirectionally processed multifractal detrended fluctuation analysis is used to extract suitable features. The online available ECG signals are examined using multifractal parameters to study its nonlinear, stochastic, and complex fluctuations. A feature set comprising of ten features has been extracted from the segmented ECG beats followed by feeding to a single layer bi-LSTM network. Experimental results reveal that the feature-based bi-LSTM network outperforms the state-of-the-art DL methods compared on the same dataset. The proposed algorithm is a generic one and can be used for any computer-aided diagnosis of cardiovascular diseases. |
doi_str_mv | 10.1109/LSENS.2020.3006756 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2422017606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9133313</ieee_id><sourcerecordid>2422017606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGEwnyB_Syiefi7Ee77ZEgIEnFQ-HcLNstFGkXd7cx-OstHzEeJjN5876TmQehRwJDQiB5SbPJIhtSoDBkAJEIoxvUo1yEAeGC3v6b79HAuR0AkJgKYNBDP6PWm1p6XeBX7bXylWmwbAo83kvnqrJS8iyZEo-s3R79tq4knlpT48l4hrNq08i9wytXNRs81dK3VgfzpmhVtzE1nZhtjfXBUtsav-va2CNeaP9t7OcDuiu7rB5cex-tppPl-C1IP2bz8SgNFE1CH5QhoSLRisREFjwWJY80h2StuGKse5bHXBSCQsHiNYQJBSU4L1mUhIKyRCrWR8-XvQdrvlrtfL4zrT2dnVNOKRARQdS56MWlrHHO6jI_2KqW9pgTyE-Y8zPm_IQ5v2LuQk-XUKW1_gskhDHW1S9nfXgm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422017606</pqid></control><display><type>article</type><title>Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ganguly, Biswarup ; Ghosal, Avishek ; Das, Anirbed ; Das, Debanjan ; Chatterjee, Debanjan ; Rakshit, Debmalya</creator><creatorcontrib>Ganguly, Biswarup ; Ghosal, Avishek ; Das, Anirbed ; Das, Debanjan ; Chatterjee, Debanjan ; Rakshit, Debmalya</creatorcontrib><description>This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is employed, where a unidirectionally processed multifractal detrended fluctuation analysis is used to extract suitable features. The online available ECG signals are examined using multifractal parameters to study its nonlinear, stochastic, and complex fluctuations. A feature set comprising of ten features has been extracted from the segmented ECG beats followed by feeding to a single layer bi-LSTM network. Experimental results reveal that the feature-based bi-LSTM network outperforms the state-of-the-art DL methods compared on the same dataset. The proposed algorithm is a generic one and can be used for any computer-aided diagnosis of cardiovascular diseases.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2020.3006756</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Arrhythmia ; automated detection ; Automation ; Cardiac arrhythmia ; Classification ; deep learning (DL) ; Electrocardiography ; Feature extraction ; Fractals ; Heart beat ; Machine learning ; Measurement ; Sensor applications ; Short term ; signal processing ; Testing ; Training</subject><ispartof>IEEE sensors letters, 2020-08, Vol.4 (8), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3</citedby><cites>FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3</cites><orcidid>0000-0002-7171-8269 ; 0000-0002-8348-8763 ; 0000-0001-8704-4361 ; 0000-0001-6855-5246 ; 0000-0001-5331-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9133313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ganguly, Biswarup</creatorcontrib><creatorcontrib>Ghosal, Avishek</creatorcontrib><creatorcontrib>Das, Anirbed</creatorcontrib><creatorcontrib>Das, Debanjan</creatorcontrib><creatorcontrib>Chatterjee, Debanjan</creatorcontrib><creatorcontrib>Rakshit, Debmalya</creatorcontrib><title>Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is employed, where a unidirectionally processed multifractal detrended fluctuation analysis is used to extract suitable features. The online available ECG signals are examined using multifractal parameters to study its nonlinear, stochastic, and complex fluctuations. A feature set comprising of ten features has been extracted from the segmented ECG beats followed by feeding to a single layer bi-LSTM network. Experimental results reveal that the feature-based bi-LSTM network outperforms the state-of-the-art DL methods compared on the same dataset. The proposed algorithm is a generic one and can be used for any computer-aided diagnosis of cardiovascular diseases.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>automated detection</subject><subject>Automation</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>deep learning (DL)</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Fractals</subject><subject>Heart beat</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Sensor applications</subject><subject>Short term</subject><subject>signal processing</subject><subject>Testing</subject><subject>Training</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwkAQhjdGEwnyB_Syiefi7Ee77ZEgIEnFQ-HcLNstFGkXd7cx-OstHzEeJjN5876TmQehRwJDQiB5SbPJIhtSoDBkAJEIoxvUo1yEAeGC3v6b79HAuR0AkJgKYNBDP6PWm1p6XeBX7bXylWmwbAo83kvnqrJS8iyZEo-s3R79tq4knlpT48l4hrNq08i9wytXNRs81dK3VgfzpmhVtzE1nZhtjfXBUtsav-va2CNeaP9t7OcDuiu7rB5cex-tppPl-C1IP2bz8SgNFE1CH5QhoSLRisREFjwWJY80h2StuGKse5bHXBSCQsHiNYQJBSU4L1mUhIKyRCrWR8-XvQdrvlrtfL4zrT2dnVNOKRARQdS56MWlrHHO6jI_2KqW9pgTyE-Y8zPm_IQ5v2LuQk-XUKW1_gskhDHW1S9nfXgm</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ganguly, Biswarup</creator><creator>Ghosal, Avishek</creator><creator>Das, Anirbed</creator><creator>Das, Debanjan</creator><creator>Chatterjee, Debanjan</creator><creator>Rakshit, Debmalya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7171-8269</orcidid><orcidid>https://orcid.org/0000-0002-8348-8763</orcidid><orcidid>https://orcid.org/0000-0001-8704-4361</orcidid><orcidid>https://orcid.org/0000-0001-6855-5246</orcidid><orcidid>https://orcid.org/0000-0001-5331-0799</orcidid></search><sort><creationdate>20200801</creationdate><title>Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network</title><author>Ganguly, Biswarup ; Ghosal, Avishek ; Das, Anirbed ; Das, Debanjan ; Chatterjee, Debanjan ; Rakshit, Debmalya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>automated detection</topic><topic>Automation</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>deep learning (DL)</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Fractals</topic><topic>Heart beat</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Sensor applications</topic><topic>Short term</topic><topic>signal processing</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganguly, Biswarup</creatorcontrib><creatorcontrib>Ghosal, Avishek</creatorcontrib><creatorcontrib>Das, Anirbed</creatorcontrib><creatorcontrib>Das, Debanjan</creatorcontrib><creatorcontrib>Chatterjee, Debanjan</creatorcontrib><creatorcontrib>Rakshit, Debmalya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganguly, Biswarup</au><au>Ghosal, Avishek</au><au>Das, Anirbed</au><au>Das, Debanjan</au><au>Chatterjee, Debanjan</au><au>Rakshit, Debmalya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>4</volume><issue>8</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>This letter proposes an automated detection and classification of arrhythmia from the electrocardiogram (ECG) signals to employ deep learning (DL) framework based on long short-term memory (LSTM) network. Instead of using the classical LSTM network, a feature-based bidirectional LSTM (bi-LSTM) is employed, where a unidirectionally processed multifractal detrended fluctuation analysis is used to extract suitable features. The online available ECG signals are examined using multifractal parameters to study its nonlinear, stochastic, and complex fluctuations. A feature set comprising of ten features has been extracted from the segmented ECG beats followed by feeding to a single layer bi-LSTM network. Experimental results reveal that the feature-based bi-LSTM network outperforms the state-of-the-art DL methods compared on the same dataset. The proposed algorithm is a generic one and can be used for any computer-aided diagnosis of cardiovascular diseases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2020.3006756</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7171-8269</orcidid><orcidid>https://orcid.org/0000-0002-8348-8763</orcidid><orcidid>https://orcid.org/0000-0001-8704-4361</orcidid><orcidid>https://orcid.org/0000-0001-6855-5246</orcidid><orcidid>https://orcid.org/0000-0001-5331-0799</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2020-08, Vol.4 (8), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_proquest_journals_2422017606 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Arrhythmia automated detection Automation Cardiac arrhythmia Classification deep learning (DL) Electrocardiography Feature extraction Fractals Heart beat Machine learning Measurement Sensor applications Short term signal processing Testing Training |
title | Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Detection%20and%20Classification%20of%20Arrhythmia%20From%20ECG%20Signals%20Using%20Feature-Induced%20Long%20Short-Term%20Memory%20Network&rft.jtitle=IEEE%20sensors%20letters&rft.au=Ganguly,%20Biswarup&rft.date=2020-08-01&rft.volume=4&rft.issue=8&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2020.3006756&rft_dat=%3Cproquest_ieee_%3E2422017606%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-f51279ec181ad487f46e409bc4c336754847d720d38b05920c744f36957239ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2422017606&rft_id=info:pmid/&rft_ieee_id=9133313&rfr_iscdi=true |