Loading…
Performance Evaluation of Hybrid Air Purification System with Vegetation Soil and Electrostatic Precipitator Filters
This paper describes designing, manufacturing, and evaluating an eco-friendly modular-type air purification system to enhance the removal efficiency of fine particulate matter (PM) in urban public spaces, especially in hotspots. This system consists of artificial soil based-vegetation and electrosta...
Saved in:
Published in: | Sustainability 2020-07, Vol.12 (13), p.5428 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes designing, manufacturing, and evaluating an eco-friendly modular-type air purification system to enhance the removal efficiency of fine particulate matter (PM) in urban public spaces, especially in hotspots. This system consists of artificial soil based-vegetation and electrostatic precipitator (ESP) filters. Unlike the so-called passive removal method, which adsorbs fine PM only by the leaves of plants, the vegetation soil filter based on multi-layered different artificial soils adopts an active removal method in which air purification is performed in the soil itself, bypassing external air by using the air circulation fan in the soil. The ESP filter is designed and evaluated to have a high fine PM removal efficiency, even at high suction velocity, to remove large amounts of outdoor fine PM. Throughout the experimental measurements on the hybrid air purification system with vegetation soil and ESP filters, it is observed that the vegetation soil filter has a 78.5% reduction efficiency for PM2.5 and a 47% for PM10 at the inlet air velocity of 0.15 m/s. The ESP filter also has a 73.1% reduction efficiency for PM2.5 and 87.3% for PM10 at an inlet air velocity of 3 m/s. Based on the performance evaluations of the vegetation soil filter and the ESP filter, it is noted that each individual module will be applied to an air purification tower with vertical expansion and installed in a high concentration area of fine PM in a downtown area to contribute to the fine PM reduction in the community. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su12135428 |