Loading…
Entanglement Entropy from TFD Entropy Operator
In this work, a canonical method to compute entanglement entropy is proposed. We show that for two-dimensional conformal theories defined in a torus, a choice of moduli space allows the typical entropy operator of the TFD to provide the entanglement entropy of the degrees of freedom defined in a seg...
Saved in:
Published in: | arXiv.org 2021-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dias, M Nedel, Daniel L Senise, C R |
description | In this work, a canonical method to compute entanglement entropy is proposed. We show that for two-dimensional conformal theories defined in a torus, a choice of moduli space allows the typical entropy operator of the TFD to provide the entanglement entropy of the degrees of freedom defined in a segment and their complement. In this procedure, it is not necessary to make an analytic continuation from the Rényi entropy and the von Neumann entanglement entropy is calculated directly from the expected value of an entanglement entropy operator. We also propose a model for the evolution of the entanglement entropy and show that it grows linearly with time. |
doi_str_mv | 10.48550/arxiv.2007.05365 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2423335297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423335297</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-d615d09b4b3722584a9ef18434661749c35d7ea8c92e722e429b1fbd1fbcc91a3</originalsourceid><addsrcrecordid>eNo9T01Lw0AUXATBUvsDvAU8J-6-t28_jlJbFQq95F42yYtY2mzcpKL_3gXFwzDMMMwwQtwpWWlHJB9C-nr_rEBKW0lCQ1diAYiqdBrgRqym6SilBGOBCBei2gxzGN5OfOZhLrJIcfwu-hTPRb19-jf2I6cwx3Qrrvtwmnj1x0tRbzf1-qXc7Z9f14-7MhDYsjOKOukb3aAFIKeD5145jdoYZbVvkTrLwbUeOAdYg29U33QZbetVwKW4_60dU_y48DQfjvGShrx4AJ3fIIG3-AMw10Of</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423335297</pqid></control><display><type>article</type><title>Entanglement Entropy from TFD Entropy Operator</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Dias, M ; Nedel, Daniel L ; Senise, C R</creator><creatorcontrib>Dias, M ; Nedel, Daniel L ; Senise, C R</creatorcontrib><description>In this work, a canonical method to compute entanglement entropy is proposed. We show that for two-dimensional conformal theories defined in a torus, a choice of moduli space allows the typical entropy operator of the TFD to provide the entanglement entropy of the degrees of freedom defined in a segment and their complement. In this procedure, it is not necessary to make an analytic continuation from the Rényi entropy and the von Neumann entanglement entropy is calculated directly from the expected value of an entanglement entropy operator. We also propose a model for the evolution of the entanglement entropy and show that it grows linearly with time.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2007.05365</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Entanglement ; Entropy ; Mathematical analysis ; Toruses</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2423335297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Dias, M</creatorcontrib><creatorcontrib>Nedel, Daniel L</creatorcontrib><creatorcontrib>Senise, C R</creatorcontrib><title>Entanglement Entropy from TFD Entropy Operator</title><title>arXiv.org</title><description>In this work, a canonical method to compute entanglement entropy is proposed. We show that for two-dimensional conformal theories defined in a torus, a choice of moduli space allows the typical entropy operator of the TFD to provide the entanglement entropy of the degrees of freedom defined in a segment and their complement. In this procedure, it is not necessary to make an analytic continuation from the Rényi entropy and the von Neumann entanglement entropy is calculated directly from the expected value of an entanglement entropy operator. We also propose a model for the evolution of the entanglement entropy and show that it grows linearly with time.</description><subject>Entanglement</subject><subject>Entropy</subject><subject>Mathematical analysis</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9T01Lw0AUXATBUvsDvAU8J-6-t28_jlJbFQq95F42yYtY2mzcpKL_3gXFwzDMMMwwQtwpWWlHJB9C-nr_rEBKW0lCQ1diAYiqdBrgRqym6SilBGOBCBei2gxzGN5OfOZhLrJIcfwu-hTPRb19-jf2I6cwx3Qrrvtwmnj1x0tRbzf1-qXc7Z9f14-7MhDYsjOKOukb3aAFIKeD5145jdoYZbVvkTrLwbUeOAdYg29U33QZbetVwKW4_60dU_y48DQfjvGShrx4AJ3fIIG3-AMw10Of</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Dias, M</creator><creator>Nedel, Daniel L</creator><creator>Senise, C R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210526</creationdate><title>Entanglement Entropy from TFD Entropy Operator</title><author>Dias, M ; Nedel, Daniel L ; Senise, C R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-d615d09b4b3722584a9ef18434661749c35d7ea8c92e722e429b1fbd1fbcc91a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Entanglement</topic><topic>Entropy</topic><topic>Mathematical analysis</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Dias, M</creatorcontrib><creatorcontrib>Nedel, Daniel L</creatorcontrib><creatorcontrib>Senise, C R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, M</au><au>Nedel, Daniel L</au><au>Senise, C R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement Entropy from TFD Entropy Operator</atitle><jtitle>arXiv.org</jtitle><date>2021-05-26</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this work, a canonical method to compute entanglement entropy is proposed. We show that for two-dimensional conformal theories defined in a torus, a choice of moduli space allows the typical entropy operator of the TFD to provide the entanglement entropy of the degrees of freedom defined in a segment and their complement. In this procedure, it is not necessary to make an analytic continuation from the Rényi entropy and the von Neumann entanglement entropy is calculated directly from the expected value of an entanglement entropy operator. We also propose a model for the evolution of the entanglement entropy and show that it grows linearly with time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2007.05365</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2423335297 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Entanglement Entropy Mathematical analysis Toruses |
title | Entanglement Entropy from TFD Entropy Operator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20Entropy%20from%20TFD%20Entropy%20Operator&rft.jtitle=arXiv.org&rft.au=Dias,%20M&rft.date=2021-05-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2007.05365&rft_dat=%3Cproquest%3E2423335297%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-d615d09b4b3722584a9ef18434661749c35d7ea8c92e722e429b1fbd1fbcc91a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423335297&rft_id=info:pmid/&rfr_iscdi=true |