Loading…
High‐pressure structural stability, equation of state, and thermal expansion behavior of cubic HfO2
The structural stability, equation of state, and thermal expansion behavior of nanocrystalline cubic HfO2, an ultra‐high‐temperature ceramic, have been investigated using X‐ray diffraction at extreme conditions of pressures and temperatures. High‐pressure studies show that the cubic structure is sta...
Saved in:
Published in: | Journal of the American Ceramic Society 2020-09, Vol.103 (9), p.5374-5381 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5381 |
container_issue | 9 |
container_start_page | 5374 |
container_title | Journal of the American Ceramic Society |
container_volume | 103 |
creator | Irshad, K. A. Srihari, Velaga Kumar, D. Sanjay Ananthasivan, K. Jena, Hrudananda |
description | The structural stability, equation of state, and thermal expansion behavior of nanocrystalline cubic HfO2, an ultra‐high‐temperature ceramic, have been investigated using X‐ray diffraction at extreme conditions of pressures and temperatures. High‐pressure studies show that the cubic structure is stable up to 26.2 GPa, while the high‐temperature studies show the stability of the cubic structure up to 600°C. The Rietveld structure refinement of the high‐pressure data reveals the progressive transition of secondary monoclinic phase to the cubic phase at higher pressures. The phase progression is accompanied by incompressibility along the b axis and a large compressibility along the c axis of the monoclinic structure. The second‐order Birch‐Murnaghan equation of state fit to the unit cell volume data yielded a bulk modulus of 242(16) GPa for the cubic structure. A linear thermal expansion value of αa(c) = 8.80(15) × 10−6°C−1 and a volume thermal expansion value of αv = 26.5(4) × 10−6°C−1 have been determined from the in situ high‐temperature X‐ray diffraction studies. The results are discussed by comparing with the high‐pressure and high‐temperature behavior of isostructural ZrO2. To the best of our knowledge, this is the first experimental report on the structural stability of cubic HfO2 at high pressures. |
doi_str_mv | 10.1111/jace.17266 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2423389169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423389169</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2256-6f55bb7570fc866a8c0681fd83c8bee65e7da635cce2787437c6fcca827f5ee43</originalsourceid><addsrcrecordid>eNotkMtOwkAUQCdGExHd-AVN3FKcR-fBkhAEDQkbXU-mwx0ZUtoy06rs_AS_0S-xBe_mvk7uTQ5C9wSPSRePO2NhTCQV4gINCOckpRMiLtEAY0xTqSi-Rjcx7rqWTFQ2QLD079vf7586QIxtgCQ2obVNG0zRlSb3hW-OowQOrWl8VSaV68cNjBJTbpJmC2HfkfBVmzL2-xy25sNXoQdtm3ubLN2a3qIrZ4oId_95iN6e5q-zZbpaL55n01VaU8pFKhzneS65xM4qIYyyWCjiNopZlQMIDnJjBOPWApVKZkxa4aw1ikrHATI2RA_nu3WoDi3ERu-qNpTdS00zypjqZEw6ipypT1_AUdfB7004aoJ171D3DvXJoX6Zzuaniv0B-v1o_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423389169</pqid></control><display><type>article</type><title>High‐pressure structural stability, equation of state, and thermal expansion behavior of cubic HfO2</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Irshad, K. A. ; Srihari, Velaga ; Kumar, D. Sanjay ; Ananthasivan, K. ; Jena, Hrudananda</creator><creatorcontrib>Irshad, K. A. ; Srihari, Velaga ; Kumar, D. Sanjay ; Ananthasivan, K. ; Jena, Hrudananda</creatorcontrib><description>The structural stability, equation of state, and thermal expansion behavior of nanocrystalline cubic HfO2, an ultra‐high‐temperature ceramic, have been investigated using X‐ray diffraction at extreme conditions of pressures and temperatures. High‐pressure studies show that the cubic structure is stable up to 26.2 GPa, while the high‐temperature studies show the stability of the cubic structure up to 600°C. The Rietveld structure refinement of the high‐pressure data reveals the progressive transition of secondary monoclinic phase to the cubic phase at higher pressures. The phase progression is accompanied by incompressibility along the b axis and a large compressibility along the c axis of the monoclinic structure. The second‐order Birch‐Murnaghan equation of state fit to the unit cell volume data yielded a bulk modulus of 242(16) GPa for the cubic structure. A linear thermal expansion value of αa(c) = 8.80(15) × 10−6°C−1 and a volume thermal expansion value of αv = 26.5(4) × 10−6°C−1 have been determined from the in situ high‐temperature X‐ray diffraction studies. The results are discussed by comparing with the high‐pressure and high‐temperature behavior of isostructural ZrO2. To the best of our knowledge, this is the first experimental report on the structural stability of cubic HfO2 at high pressures.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17266</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Bulk modulus ; Compressibility ; equation of state ; Equations of state ; Hafnium oxide ; high pressure ; high temperature ; Incompressibility ; Phase transitions ; Structural stability ; Temperature ; Thermal expansion ; ultra‐high‐temperature ceramics ; Unit cell ; X-ray diffraction ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2020-09, Vol.103 (9), p.5374-5381</ispartof><rights>2020 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2790-6430 ; 0000-0002-0421-7851 ; 0000-0001-7872-2108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Irshad, K. A.</creatorcontrib><creatorcontrib>Srihari, Velaga</creatorcontrib><creatorcontrib>Kumar, D. Sanjay</creatorcontrib><creatorcontrib>Ananthasivan, K.</creatorcontrib><creatorcontrib>Jena, Hrudananda</creatorcontrib><title>High‐pressure structural stability, equation of state, and thermal expansion behavior of cubic HfO2</title><title>Journal of the American Ceramic Society</title><description>The structural stability, equation of state, and thermal expansion behavior of nanocrystalline cubic HfO2, an ultra‐high‐temperature ceramic, have been investigated using X‐ray diffraction at extreme conditions of pressures and temperatures. High‐pressure studies show that the cubic structure is stable up to 26.2 GPa, while the high‐temperature studies show the stability of the cubic structure up to 600°C. The Rietveld structure refinement of the high‐pressure data reveals the progressive transition of secondary monoclinic phase to the cubic phase at higher pressures. The phase progression is accompanied by incompressibility along the b axis and a large compressibility along the c axis of the monoclinic structure. The second‐order Birch‐Murnaghan equation of state fit to the unit cell volume data yielded a bulk modulus of 242(16) GPa for the cubic structure. A linear thermal expansion value of αa(c) = 8.80(15) × 10−6°C−1 and a volume thermal expansion value of αv = 26.5(4) × 10−6°C−1 have been determined from the in situ high‐temperature X‐ray diffraction studies. The results are discussed by comparing with the high‐pressure and high‐temperature behavior of isostructural ZrO2. To the best of our knowledge, this is the first experimental report on the structural stability of cubic HfO2 at high pressures.</description><subject>Bulk modulus</subject><subject>Compressibility</subject><subject>equation of state</subject><subject>Equations of state</subject><subject>Hafnium oxide</subject><subject>high pressure</subject><subject>high temperature</subject><subject>Incompressibility</subject><subject>Phase transitions</subject><subject>Structural stability</subject><subject>Temperature</subject><subject>Thermal expansion</subject><subject>ultra‐high‐temperature ceramics</subject><subject>Unit cell</subject><subject>X-ray diffraction</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwkAUQCdGExHd-AVN3FKcR-fBkhAEDQkbXU-mwx0ZUtoy06rs_AS_0S-xBe_mvk7uTQ5C9wSPSRePO2NhTCQV4gINCOckpRMiLtEAY0xTqSi-Rjcx7rqWTFQ2QLD079vf7586QIxtgCQ2obVNG0zRlSb3hW-OowQOrWl8VSaV68cNjBJTbpJmC2HfkfBVmzL2-xy25sNXoQdtm3ubLN2a3qIrZ4oId_95iN6e5q-zZbpaL55n01VaU8pFKhzneS65xM4qIYyyWCjiNopZlQMIDnJjBOPWApVKZkxa4aw1ikrHATI2RA_nu3WoDi3ERu-qNpTdS00zypjqZEw6ipypT1_AUdfB7004aoJ171D3DvXJoX6Zzuaniv0B-v1o_w</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Irshad, K. A.</creator><creator>Srihari, Velaga</creator><creator>Kumar, D. Sanjay</creator><creator>Ananthasivan, K.</creator><creator>Jena, Hrudananda</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2790-6430</orcidid><orcidid>https://orcid.org/0000-0002-0421-7851</orcidid><orcidid>https://orcid.org/0000-0001-7872-2108</orcidid></search><sort><creationdate>202009</creationdate><title>High‐pressure structural stability, equation of state, and thermal expansion behavior of cubic HfO2</title><author>Irshad, K. A. ; Srihari, Velaga ; Kumar, D. Sanjay ; Ananthasivan, K. ; Jena, Hrudananda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2256-6f55bb7570fc866a8c0681fd83c8bee65e7da635cce2787437c6fcca827f5ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bulk modulus</topic><topic>Compressibility</topic><topic>equation of state</topic><topic>Equations of state</topic><topic>Hafnium oxide</topic><topic>high pressure</topic><topic>high temperature</topic><topic>Incompressibility</topic><topic>Phase transitions</topic><topic>Structural stability</topic><topic>Temperature</topic><topic>Thermal expansion</topic><topic>ultra‐high‐temperature ceramics</topic><topic>Unit cell</topic><topic>X-ray diffraction</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irshad, K. A.</creatorcontrib><creatorcontrib>Srihari, Velaga</creatorcontrib><creatorcontrib>Kumar, D. Sanjay</creatorcontrib><creatorcontrib>Ananthasivan, K.</creatorcontrib><creatorcontrib>Jena, Hrudananda</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irshad, K. A.</au><au>Srihari, Velaga</au><au>Kumar, D. Sanjay</au><au>Ananthasivan, K.</au><au>Jena, Hrudananda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐pressure structural stability, equation of state, and thermal expansion behavior of cubic HfO2</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-09</date><risdate>2020</risdate><volume>103</volume><issue>9</issue><spage>5374</spage><epage>5381</epage><pages>5374-5381</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The structural stability, equation of state, and thermal expansion behavior of nanocrystalline cubic HfO2, an ultra‐high‐temperature ceramic, have been investigated using X‐ray diffraction at extreme conditions of pressures and temperatures. High‐pressure studies show that the cubic structure is stable up to 26.2 GPa, while the high‐temperature studies show the stability of the cubic structure up to 600°C. The Rietveld structure refinement of the high‐pressure data reveals the progressive transition of secondary monoclinic phase to the cubic phase at higher pressures. The phase progression is accompanied by incompressibility along the b axis and a large compressibility along the c axis of the monoclinic structure. The second‐order Birch‐Murnaghan equation of state fit to the unit cell volume data yielded a bulk modulus of 242(16) GPa for the cubic structure. A linear thermal expansion value of αa(c) = 8.80(15) × 10−6°C−1 and a volume thermal expansion value of αv = 26.5(4) × 10−6°C−1 have been determined from the in situ high‐temperature X‐ray diffraction studies. The results are discussed by comparing with the high‐pressure and high‐temperature behavior of isostructural ZrO2. To the best of our knowledge, this is the first experimental report on the structural stability of cubic HfO2 at high pressures.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17266</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2790-6430</orcidid><orcidid>https://orcid.org/0000-0002-0421-7851</orcidid><orcidid>https://orcid.org/0000-0001-7872-2108</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2020-09, Vol.103 (9), p.5374-5381 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2423389169 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bulk modulus Compressibility equation of state Equations of state Hafnium oxide high pressure high temperature Incompressibility Phase transitions Structural stability Temperature Thermal expansion ultra‐high‐temperature ceramics Unit cell X-ray diffraction Zirconium dioxide |
title | High‐pressure structural stability, equation of state, and thermal expansion behavior of cubic HfO2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90pressure%20structural%20stability,%20equation%20of%20state,%20and%20thermal%20expansion%20behavior%20of%20cubic%20HfO2&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Irshad,%20K.%20A.&rft.date=2020-09&rft.volume=103&rft.issue=9&rft.spage=5374&rft.epage=5381&rft.pages=5374-5381&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17266&rft_dat=%3Cproquest_wiley%3E2423389169%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2256-6f55bb7570fc866a8c0681fd83c8bee65e7da635cce2787437c6fcca827f5ee43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423389169&rft_id=info:pmid/&rfr_iscdi=true |