Loading…

Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study

Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of inorganic and organometallic polymers and materials 2020-08, Vol.30 (8), p.2890-2906
Main Authors: Raafat, Amany I., Kamal, H., Sharada, Hayat M., Abd elhalim, Sawsan A., Mohamed, Randa D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763
cites cdi_FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763
container_end_page 2906
container_issue 8
container_start_page 2890
container_title Journal of inorganic and organometallic polymers and materials
container_volume 30
creator Raafat, Amany I.
Kamal, H.
Sharada, Hayat M.
Abd elhalim, Sawsan A.
Mohamed, Randa D.
description Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.
doi_str_mv 10.1007/s10904-019-01418-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423565227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423565227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763</originalsourceid><addsrcrecordid>eNp9UEtPAjEQ3hhNRPQPeGriRQ8rfWy3izcFBRLUBNBr0-0Dl0CL7W7i_gl_sxWM3jxMZjLzPTJfkpwjeI0gZL2AYB9mKUT9WBkqUnKQdBBlWYoyig5_54wcJychrCAkBaSok3zOhKpEXTkL5q2t33SoAnAGPIqljXOzAUO31Qo8CevAuFXefbRiGwm17l3eSiErkY70Oi7sFZhLYYxbK2CcB3fOarCoQmg0mOmlttrvfG7AxILXqvYODH2zjLe1FkGDed2o9jQ5MmId9NlP7yYvD_eLwTidPo8mg9tpKgnN61SasqQCZUWJKZbxE1iqvpA5QxCjPlMlK2XJUKGhIZSpHEOU56qAghhFBctJN7nY6269e290qPnKNd5GS44zHD0oxiyi8B4lvQvBa8O3vtoI33IE-XfufJ87j7nzXe6cRBLZk0IE26X2f9L_sL4AGoOGnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423565227</pqid></control><display><type>article</type><title>Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study</title><source>Springer Link</source><creator>Raafat, Amany I. ; Kamal, H. ; Sharada, Hayat M. ; Abd elhalim, Sawsan A. ; Mohamed, Randa D.</creator><creatorcontrib>Raafat, Amany I. ; Kamal, H. ; Sharada, Hayat M. ; Abd elhalim, Sawsan A. ; Mohamed, Randa D.</creatorcontrib><description>Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.</description><identifier>ISSN: 1574-1443</identifier><identifier>EISSN: 1574-1451</identifier><identifier>DOI: 10.1007/s10904-019-01418-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apatite ; Biocompatibility ; Biodegradability ; Biomedical materials ; Cementing ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Crosslinking ; Drug delivery systems ; E coli ; Functional groups ; Gamma irradiation ; Gamma rays ; Gelatin ; Hydroxyapatite ; Inorganic Chemistry ; Ketoprofen ; Magnesium ; Mechanical properties ; Nanocomposites ; Nanoparticles ; Organic Chemistry ; Polymer Sciences ; Porosity ; Regeneration ; Scaffolds ; Sterilization ; Tissue engineering ; Toxicity</subject><ispartof>Journal of inorganic and organometallic polymers and materials, 2020-08, Vol.30 (8), p.2890-2906</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763</citedby><cites>FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763</cites><orcidid>0000-0003-4210-5591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raafat, Amany I.</creatorcontrib><creatorcontrib>Kamal, H.</creatorcontrib><creatorcontrib>Sharada, Hayat M.</creatorcontrib><creatorcontrib>Abd elhalim, Sawsan A.</creatorcontrib><creatorcontrib>Mohamed, Randa D.</creatorcontrib><title>Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study</title><title>Journal of inorganic and organometallic polymers and materials</title><addtitle>J Inorg Organomet Polym</addtitle><description>Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.</description><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Cementing</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crosslinking</subject><subject>Drug delivery systems</subject><subject>E coli</subject><subject>Functional groups</subject><subject>Gamma irradiation</subject><subject>Gamma rays</subject><subject>Gelatin</subject><subject>Hydroxyapatite</subject><subject>Inorganic Chemistry</subject><subject>Ketoprofen</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Sterilization</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><issn>1574-1443</issn><issn>1574-1451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UEtPAjEQ3hhNRPQPeGriRQ8rfWy3izcFBRLUBNBr0-0Dl0CL7W7i_gl_sxWM3jxMZjLzPTJfkpwjeI0gZL2AYB9mKUT9WBkqUnKQdBBlWYoyig5_54wcJychrCAkBaSok3zOhKpEXTkL5q2t33SoAnAGPIqljXOzAUO31Qo8CevAuFXefbRiGwm17l3eSiErkY70Oi7sFZhLYYxbK2CcB3fOarCoQmg0mOmlttrvfG7AxILXqvYODH2zjLe1FkGDed2o9jQ5MmId9NlP7yYvD_eLwTidPo8mg9tpKgnN61SasqQCZUWJKZbxE1iqvpA5QxCjPlMlK2XJUKGhIZSpHEOU56qAghhFBctJN7nY6269e290qPnKNd5GS44zHD0oxiyi8B4lvQvBa8O3vtoI33IE-XfufJ87j7nzXe6cRBLZk0IE26X2f9L_sL4AGoOGnA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Raafat, Amany I.</creator><creator>Kamal, H.</creator><creator>Sharada, Hayat M.</creator><creator>Abd elhalim, Sawsan A.</creator><creator>Mohamed, Randa D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4210-5591</orcidid></search><sort><creationdate>20200801</creationdate><title>Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study</title><author>Raafat, Amany I. ; Kamal, H. ; Sharada, Hayat M. ; Abd elhalim, Sawsan A. ; Mohamed, Randa D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Cementing</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crosslinking</topic><topic>Drug delivery systems</topic><topic>E coli</topic><topic>Functional groups</topic><topic>Gamma irradiation</topic><topic>Gamma rays</topic><topic>Gelatin</topic><topic>Hydroxyapatite</topic><topic>Inorganic Chemistry</topic><topic>Ketoprofen</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Sterilization</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raafat, Amany I.</creatorcontrib><creatorcontrib>Kamal, H.</creatorcontrib><creatorcontrib>Sharada, Hayat M.</creatorcontrib><creatorcontrib>Abd elhalim, Sawsan A.</creatorcontrib><creatorcontrib>Mohamed, Randa D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raafat, Amany I.</au><au>Kamal, H.</au><au>Sharada, Hayat M.</au><au>Abd elhalim, Sawsan A.</au><au>Mohamed, Randa D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study</atitle><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle><stitle>J Inorg Organomet Polym</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>30</volume><issue>8</issue><spage>2890</spage><epage>2906</epage><pages>2890-2906</pages><issn>1574-1443</issn><eissn>1574-1451</eissn><abstract>Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10904-019-01418-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4210-5591</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1574-1443
ispartof Journal of inorganic and organometallic polymers and materials, 2020-08, Vol.30 (8), p.2890-2906
issn 1574-1443
1574-1451
language eng
recordid cdi_proquest_journals_2423565227
source Springer Link
subjects Apatite
Biocompatibility
Biodegradability
Biomedical materials
Cementing
Chemical synthesis
Chemistry
Chemistry and Materials Science
Crosslinking
Drug delivery systems
E coli
Functional groups
Gamma irradiation
Gamma rays
Gelatin
Hydroxyapatite
Inorganic Chemistry
Ketoprofen
Magnesium
Mechanical properties
Nanocomposites
Nanoparticles
Organic Chemistry
Polymer Sciences
Porosity
Regeneration
Scaffolds
Sterilization
Tissue engineering
Toxicity
title Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20Synthesis%20of%20Magnesium%20Doped%20Nano%20Hydroxyapatite/(Acacia-Gelatin)%20Scaffold%20for%20Bone%20Tissue%20Regeneration:%20In%20Vitro%20Drug%20Release%20Study&rft.jtitle=Journal%20of%20inorganic%20and%20organometallic%20polymers%20and%20materials&rft.au=Raafat,%20Amany%20I.&rft.date=2020-08-01&rft.volume=30&rft.issue=8&rft.spage=2890&rft.epage=2906&rft.pages=2890-2906&rft.issn=1574-1443&rft.eissn=1574-1451&rft_id=info:doi/10.1007/s10904-019-01418-3&rft_dat=%3Cproquest_cross%3E2423565227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423565227&rft_id=info:pmid/&rfr_iscdi=true