Loading…
Surface emitting 1.5 µm multi-quantum well LED on epitaxial lateral overgrowth InP/Si
We demonstrate a surface emitting 1.5 µm multi-quantum well (MQW) light-emitting diode (LED) on a 3-inch epitaxial lateral overgrowth (ELOG) InP/Si wafer. The enhanced crystalline quality of ELOG InP/Si is revealed by various characterization techniques, which gives rise to a MQW with high photolumi...
Saved in:
Published in: | Optical materials express 2020-07, Vol.10 (7), p.1714 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate a surface emitting 1.5 µm multi-quantum well (MQW) light-emitting diode (LED) on a 3-inch epitaxial lateral overgrowth (ELOG) InP/Si wafer. The enhanced crystalline quality of ELOG InP/Si is revealed by various characterization techniques, which gives rise to a MQW with high photoluminescence intensity at 1.5 µm and interference fringes arising from the vertical Fabry-Perot cavity. The LED devices exhibited strong electroluminescence intensity that increased with pump current. Moreover, transparency current measurements indicate optical gain in the 1.5 µm MQW on InP/Si. The results are encouraging for obtaining wafer scale 1.5 µm surface emitting laser structures on silicon with further optimization. |
---|---|
ISSN: | 2159-3930 2159-3930 |
DOI: | 10.1364/OME.395249 |