Loading…

Algorithmic Measurement Procedures

Measurements are shown to be processes designed to return figures: they are effective . This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the halting problem we draw some limitations for measurement procedures: procedures...

Full description

Saved in:
Bibliographic Details
Published in:Foundations of physics 2020-08, Vol.50 (8), p.749-763
Main Authors: Solis-Labastida, Aldo F. G., Hirsch, Jorge G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53
container_end_page 763
container_issue 8
container_start_page 749
container_title Foundations of physics
container_volume 50
creator Solis-Labastida, Aldo F. G.
Hirsch, Jorge G.
description Measurements are shown to be processes designed to return figures: they are effective . This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the halting problem we draw some limitations for measurement procedures: procedures that verify if a quantity is measured cannot work in every case.
doi_str_mv 10.1007/s10701-020-00354-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424121225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424121225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqHwA6wqWBtmJnbsLKuKl1QEC1hbiWOXVE1T7GTB3-MSJHasRiPdc690GLtEuEEAdRsRFCAHAg6QS8HFEctQKuKlxOKYZQAoeQmoT9lZjBsAKFUhMna12K770A4fXWvnz66KY3Cd2w3z19Bb16QvnrMTX22ju_i9M_Z-f_e2fOSrl4en5WLFLSkYOLq6LHythCBSTjsrPdi6QY1aK69AYl3mDdkqxzSda-2pUMKXulCNL5zMZ-x66t2H_nN0cTCbfgy7NGlIkEBCokOKppQNfYzBebMPbVeFL4NgDi7M5MIkF-bHhREJyicopvBu7cJf9T_UN0EeX2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424121225</pqid></control><display><type>article</type><title>Algorithmic Measurement Procedures</title><source>Springer Link</source><creator>Solis-Labastida, Aldo F. G. ; Hirsch, Jorge G.</creator><creatorcontrib>Solis-Labastida, Aldo F. G. ; Hirsch, Jorge G.</creatorcontrib><description>Measurements are shown to be processes designed to return figures: they are effective . This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the halting problem we draw some limitations for measurement procedures: procedures that verify if a quantity is measured cannot work in every case.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/s10701-020-00354-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical and Quantum Gravitation ; Classical Mechanics ; History and Philosophical Foundations of Physics ; Philosophy of Science ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Statistical Physics and Dynamical Systems ; Turing machines</subject><ispartof>Foundations of physics, 2020-08, Vol.50 (8), p.749-763</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53</cites><orcidid>0000-0002-2170-9903 ; 0000-0003-2798-5615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Solis-Labastida, Aldo F. G.</creatorcontrib><creatorcontrib>Hirsch, Jorge G.</creatorcontrib><title>Algorithmic Measurement Procedures</title><title>Foundations of physics</title><addtitle>Found Phys</addtitle><description>Measurements are shown to be processes designed to return figures: they are effective . This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the halting problem we draw some limitations for measurement procedures: procedures that verify if a quantity is measured cannot work in every case.</description><subject>Classical and Quantum Gravitation</subject><subject>Classical Mechanics</subject><subject>History and Philosophical Foundations of Physics</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Turing machines</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqHwA6wqWBtmJnbsLKuKl1QEC1hbiWOXVE1T7GTB3-MSJHasRiPdc690GLtEuEEAdRsRFCAHAg6QS8HFEctQKuKlxOKYZQAoeQmoT9lZjBsAKFUhMna12K770A4fXWvnz66KY3Cd2w3z19Bb16QvnrMTX22ju_i9M_Z-f_e2fOSrl4en5WLFLSkYOLq6LHythCBSTjsrPdi6QY1aK69AYl3mDdkqxzSda-2pUMKXulCNL5zMZ-x66t2H_nN0cTCbfgy7NGlIkEBCokOKppQNfYzBebMPbVeFL4NgDi7M5MIkF-bHhREJyicopvBu7cJf9T_UN0EeX2w</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Solis-Labastida, Aldo F. G.</creator><creator>Hirsch, Jorge G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2170-9903</orcidid><orcidid>https://orcid.org/0000-0003-2798-5615</orcidid></search><sort><creationdate>20200801</creationdate><title>Algorithmic Measurement Procedures</title><author>Solis-Labastida, Aldo F. G. ; Hirsch, Jorge G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classical Mechanics</topic><topic>History and Philosophical Foundations of Physics</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Turing machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solis-Labastida, Aldo F. G.</creatorcontrib><creatorcontrib>Hirsch, Jorge G.</creatorcontrib><collection>CrossRef</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solis-Labastida, Aldo F. G.</au><au>Hirsch, Jorge G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic Measurement Procedures</atitle><jtitle>Foundations of physics</jtitle><stitle>Found Phys</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>50</volume><issue>8</issue><spage>749</spage><epage>763</epage><pages>749-763</pages><issn>0015-9018</issn><eissn>1572-9516</eissn><abstract>Measurements are shown to be processes designed to return figures: they are effective . This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the halting problem we draw some limitations for measurement procedures: procedures that verify if a quantity is measured cannot work in every case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10701-020-00354-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2170-9903</orcidid><orcidid>https://orcid.org/0000-0003-2798-5615</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0015-9018
ispartof Foundations of physics, 2020-08, Vol.50 (8), p.749-763
issn 0015-9018
1572-9516
language eng
recordid cdi_proquest_journals_2424121225
source Springer Link
subjects Classical and Quantum Gravitation
Classical Mechanics
History and Philosophical Foundations of Physics
Philosophy of Science
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Statistical Physics and Dynamical Systems
Turing machines
title Algorithmic Measurement Procedures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20Measurement%20Procedures&rft.jtitle=Foundations%20of%20physics&rft.au=Solis-Labastida,%20Aldo%20F.%20G.&rft.date=2020-08-01&rft.volume=50&rft.issue=8&rft.spage=749&rft.epage=763&rft.pages=749-763&rft.issn=0015-9018&rft.eissn=1572-9516&rft_id=info:doi/10.1007/s10701-020-00354-4&rft_dat=%3Cproquest_cross%3E2424121225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424121225&rft_id=info:pmid/&rfr_iscdi=true