Loading…
Algorithmic Measurement Procedures
Measurements are shown to be processes designed to return figures: they are effective . This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the halting problem we draw some limitations for measurement procedures: procedures...
Saved in:
Published in: | Foundations of physics 2020-08, Vol.50 (8), p.749-763 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53 |
container_end_page | 763 |
container_issue | 8 |
container_start_page | 749 |
container_title | Foundations of physics |
container_volume | 50 |
creator | Solis-Labastida, Aldo F. G. Hirsch, Jorge G. |
description | Measurements are shown to be processes designed to return figures: they are
effective
. This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the
halting problem
we draw some limitations for measurement procedures: procedures that verify if a quantity is measured cannot work in every case. |
doi_str_mv | 10.1007/s10701-020-00354-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424121225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424121225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqHwA6wqWBtmJnbsLKuKl1QEC1hbiWOXVE1T7GTB3-MSJHasRiPdc690GLtEuEEAdRsRFCAHAg6QS8HFEctQKuKlxOKYZQAoeQmoT9lZjBsAKFUhMna12K770A4fXWvnz66KY3Cd2w3z19Bb16QvnrMTX22ju_i9M_Z-f_e2fOSrl4en5WLFLSkYOLq6LHythCBSTjsrPdi6QY1aK69AYl3mDdkqxzSda-2pUMKXulCNL5zMZ-x66t2H_nN0cTCbfgy7NGlIkEBCokOKppQNfYzBebMPbVeFL4NgDi7M5MIkF-bHhREJyicopvBu7cJf9T_UN0EeX2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424121225</pqid></control><display><type>article</type><title>Algorithmic Measurement Procedures</title><source>Springer Link</source><creator>Solis-Labastida, Aldo F. G. ; Hirsch, Jorge G.</creator><creatorcontrib>Solis-Labastida, Aldo F. G. ; Hirsch, Jorge G.</creatorcontrib><description>Measurements are shown to be processes designed to return figures: they are
effective
. This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the
halting problem
we draw some limitations for measurement procedures: procedures that verify if a quantity is measured cannot work in every case.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/s10701-020-00354-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical and Quantum Gravitation ; Classical Mechanics ; History and Philosophical Foundations of Physics ; Philosophy of Science ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Statistical Physics and Dynamical Systems ; Turing machines</subject><ispartof>Foundations of physics, 2020-08, Vol.50 (8), p.749-763</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53</cites><orcidid>0000-0002-2170-9903 ; 0000-0003-2798-5615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Solis-Labastida, Aldo F. G.</creatorcontrib><creatorcontrib>Hirsch, Jorge G.</creatorcontrib><title>Algorithmic Measurement Procedures</title><title>Foundations of physics</title><addtitle>Found Phys</addtitle><description>Measurements are shown to be processes designed to return figures: they are
effective
. This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the
halting problem
we draw some limitations for measurement procedures: procedures that verify if a quantity is measured cannot work in every case.</description><subject>Classical and Quantum Gravitation</subject><subject>Classical Mechanics</subject><subject>History and Philosophical Foundations of Physics</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Turing machines</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqHwA6wqWBtmJnbsLKuKl1QEC1hbiWOXVE1T7GTB3-MSJHasRiPdc690GLtEuEEAdRsRFCAHAg6QS8HFEctQKuKlxOKYZQAoeQmoT9lZjBsAKFUhMna12K770A4fXWvnz66KY3Cd2w3z19Bb16QvnrMTX22ju_i9M_Z-f_e2fOSrl4en5WLFLSkYOLq6LHythCBSTjsrPdi6QY1aK69AYl3mDdkqxzSda-2pUMKXulCNL5zMZ-x66t2H_nN0cTCbfgy7NGlIkEBCokOKppQNfYzBebMPbVeFL4NgDi7M5MIkF-bHhREJyicopvBu7cJf9T_UN0EeX2w</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Solis-Labastida, Aldo F. G.</creator><creator>Hirsch, Jorge G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2170-9903</orcidid><orcidid>https://orcid.org/0000-0003-2798-5615</orcidid></search><sort><creationdate>20200801</creationdate><title>Algorithmic Measurement Procedures</title><author>Solis-Labastida, Aldo F. G. ; Hirsch, Jorge G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classical Mechanics</topic><topic>History and Philosophical Foundations of Physics</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Turing machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solis-Labastida, Aldo F. G.</creatorcontrib><creatorcontrib>Hirsch, Jorge G.</creatorcontrib><collection>CrossRef</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solis-Labastida, Aldo F. G.</au><au>Hirsch, Jorge G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic Measurement Procedures</atitle><jtitle>Foundations of physics</jtitle><stitle>Found Phys</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>50</volume><issue>8</issue><spage>749</spage><epage>763</epage><pages>749-763</pages><issn>0015-9018</issn><eissn>1572-9516</eissn><abstract>Measurements are shown to be processes designed to return figures: they are
effective
. This effectivity allows for a formalization as Turing machines, which can be described employing computation theory. Inspired in the
halting problem
we draw some limitations for measurement procedures: procedures that verify if a quantity is measured cannot work in every case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10701-020-00354-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2170-9903</orcidid><orcidid>https://orcid.org/0000-0003-2798-5615</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-9018 |
ispartof | Foundations of physics, 2020-08, Vol.50 (8), p.749-763 |
issn | 0015-9018 1572-9516 |
language | eng |
recordid | cdi_proquest_journals_2424121225 |
source | Springer Link |
subjects | Classical and Quantum Gravitation Classical Mechanics History and Philosophical Foundations of Physics Philosophy of Science Physics Physics and Astronomy Quantum Physics Relativity Theory Statistical Physics and Dynamical Systems Turing machines |
title | Algorithmic Measurement Procedures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20Measurement%20Procedures&rft.jtitle=Foundations%20of%20physics&rft.au=Solis-Labastida,%20Aldo%20F.%20G.&rft.date=2020-08-01&rft.volume=50&rft.issue=8&rft.spage=749&rft.epage=763&rft.pages=749-763&rft.issn=0015-9018&rft.eissn=1572-9516&rft_id=info:doi/10.1007/s10701-020-00354-4&rft_dat=%3Cproquest_cross%3E2424121225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1eb96fb744227e8ec5f0cbd181887f7051b93d2ca31976388f2674f9867df6e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424121225&rft_id=info:pmid/&rfr_iscdi=true |