Loading…

Political audience diversity and news reliability in algorithmic ranking

Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-03
Main Authors: Bhadani, Saumya, Yamaya, Shun, Flammini, Alessandro, Menczer, Filippo, Ciampaglia, Giovanni Luca, Nyhan, Brendan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bhadani, Saumya
Yamaya, Shun
Flammini, Alessandro
Menczer, Filippo
Ciampaglia, Giovanni Luca
Nyhan, Brendan
description Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website's audience as a quality signal. Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards. We then incorporate audience diversity into a standard collaborative filtering framework and show that our improved algorithm increases the trustworthiness of websites suggested to users -- especially those who most frequently consume misinformation -- while keeping recommendations relevant. These findings suggest that partisan audience diversity is a valuable signal of higher journalistic standards that should be incorporated into algorithmic ranking decisions.
doi_str_mv 10.48550/arxiv.2007.08078
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2424568994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424568994</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-89db3aacd3fdd6505316f41a67d9d2e80b2821c5af102b68d7b885953e9a0033</originalsourceid><addsrcrecordid>eNotjU1LAzEUAIMgWGp_gLeA513fvnxscpSiVigo6L283WRrasxqsq3677XoaWAOM4xdNFBLoxRcUf4KhxoB2hoMtOaEzVCIpjIS8YwtStkBAOoWlRIztnocY5hCT5HT3gWfes9dOPhcwvTNKTme_Gfh2cdAXYhHGRKnuB1zmF7eQs8zpdeQtufsdKBY_OKfc_Z0e_O8XFXrh7v75fW6IoWyMtZ1gqh3YnBOK1Ci0YNsSLfOOvQGOjTY9IqGBrDTxrWdMcoq4S0BCDFnl3_V9zx-7H2ZNrtxn9PvcIMSpdLGWil-AGTbTeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424568994</pqid></control><display><type>article</type><title>Political audience diversity and news reliability in algorithmic ranking</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bhadani, Saumya ; Yamaya, Shun ; Flammini, Alessandro ; Menczer, Filippo ; Ciampaglia, Giovanni Luca ; Nyhan, Brendan</creator><creatorcontrib>Bhadani, Saumya ; Yamaya, Shun ; Flammini, Alessandro ; Menczer, Filippo ; Ciampaglia, Giovanni Luca ; Nyhan, Brendan</creatorcontrib><description>Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website's audience as a quality signal. Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards. We then incorporate audience diversity into a standard collaborative filtering framework and show that our improved algorithm increases the trustworthiness of websites suggested to users -- especially those who most frequently consume misinformation -- while keeping recommendations relevant. These findings suggest that partisan audience diversity is a valuable signal of higher journalistic standards that should be incorporated into algorithmic ranking decisions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2007.08078</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Audiences ; Browsing ; Digital media ; False information ; News ; Ranking ; Reliability ; Signal quality ; Websites</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2424568994?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Bhadani, Saumya</creatorcontrib><creatorcontrib>Yamaya, Shun</creatorcontrib><creatorcontrib>Flammini, Alessandro</creatorcontrib><creatorcontrib>Menczer, Filippo</creatorcontrib><creatorcontrib>Ciampaglia, Giovanni Luca</creatorcontrib><creatorcontrib>Nyhan, Brendan</creatorcontrib><title>Political audience diversity and news reliability in algorithmic ranking</title><title>arXiv.org</title><description>Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website's audience as a quality signal. Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards. We then incorporate audience diversity into a standard collaborative filtering framework and show that our improved algorithm increases the trustworthiness of websites suggested to users -- especially those who most frequently consume misinformation -- while keeping recommendations relevant. These findings suggest that partisan audience diversity is a valuable signal of higher journalistic standards that should be incorporated into algorithmic ranking decisions.</description><subject>Algorithms</subject><subject>Audiences</subject><subject>Browsing</subject><subject>Digital media</subject><subject>False information</subject><subject>News</subject><subject>Ranking</subject><subject>Reliability</subject><subject>Signal quality</subject><subject>Websites</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEUAIMgWGp_gLeA513fvnxscpSiVigo6L283WRrasxqsq3677XoaWAOM4xdNFBLoxRcUf4KhxoB2hoMtOaEzVCIpjIS8YwtStkBAOoWlRIztnocY5hCT5HT3gWfes9dOPhcwvTNKTme_Gfh2cdAXYhHGRKnuB1zmF7eQs8zpdeQtufsdKBY_OKfc_Z0e_O8XFXrh7v75fW6IoWyMtZ1gqh3YnBOK1Ci0YNsSLfOOvQGOjTY9IqGBrDTxrWdMcoq4S0BCDFnl3_V9zx-7H2ZNrtxn9PvcIMSpdLGWil-AGTbTeQ</recordid><startdate>20210306</startdate><enddate>20210306</enddate><creator>Bhadani, Saumya</creator><creator>Yamaya, Shun</creator><creator>Flammini, Alessandro</creator><creator>Menczer, Filippo</creator><creator>Ciampaglia, Giovanni Luca</creator><creator>Nyhan, Brendan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210306</creationdate><title>Political audience diversity and news reliability in algorithmic ranking</title><author>Bhadani, Saumya ; Yamaya, Shun ; Flammini, Alessandro ; Menczer, Filippo ; Ciampaglia, Giovanni Luca ; Nyhan, Brendan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-89db3aacd3fdd6505316f41a67d9d2e80b2821c5af102b68d7b885953e9a0033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Audiences</topic><topic>Browsing</topic><topic>Digital media</topic><topic>False information</topic><topic>News</topic><topic>Ranking</topic><topic>Reliability</topic><topic>Signal quality</topic><topic>Websites</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhadani, Saumya</creatorcontrib><creatorcontrib>Yamaya, Shun</creatorcontrib><creatorcontrib>Flammini, Alessandro</creatorcontrib><creatorcontrib>Menczer, Filippo</creatorcontrib><creatorcontrib>Ciampaglia, Giovanni Luca</creatorcontrib><creatorcontrib>Nyhan, Brendan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhadani, Saumya</au><au>Yamaya, Shun</au><au>Flammini, Alessandro</au><au>Menczer, Filippo</au><au>Ciampaglia, Giovanni Luca</au><au>Nyhan, Brendan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Political audience diversity and news reliability in algorithmic ranking</atitle><jtitle>arXiv.org</jtitle><date>2021-03-06</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website's audience as a quality signal. Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards. We then incorporate audience diversity into a standard collaborative filtering framework and show that our improved algorithm increases the trustworthiness of websites suggested to users -- especially those who most frequently consume misinformation -- while keeping recommendations relevant. These findings suggest that partisan audience diversity is a valuable signal of higher journalistic standards that should be incorporated into algorithmic ranking decisions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2007.08078</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2424568994
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Audiences
Browsing
Digital media
False information
News
Ranking
Reliability
Signal quality
Websites
title Political audience diversity and news reliability in algorithmic ranking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Political%20audience%20diversity%20and%20news%20reliability%20in%20algorithmic%20ranking&rft.jtitle=arXiv.org&rft.au=Bhadani,%20Saumya&rft.date=2021-03-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2007.08078&rft_dat=%3Cproquest%3E2424568994%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-89db3aacd3fdd6505316f41a67d9d2e80b2821c5af102b68d7b885953e9a0033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424568994&rft_id=info:pmid/&rfr_iscdi=true