Loading…
A Hölderian backtracking method for min-max and min-min problems
We present a new algorithm to solve min-max or min-min problems out of the convex world. We use rigidity assumptions, ubiquitous in learning, making our method applicable to many optimization problems. Our approach takes advantage of hidden regularity properties and allows us to devise a simple algo...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bolte, Jérôme Glaudin, Lilian Pauwels, Edouard Serrurier, Mathieu |
description | We present a new algorithm to solve min-max or min-min problems out of the convex world. We use rigidity assumptions, ubiquitous in learning, making our method applicable to many optimization problems. Our approach takes advantage of hidden regularity properties and allows us to devise a simple algorithm of ridge type. An original feature of our method is to come with automatic step size adaptation which departs from the usual overly cautious backtracking methods. In a general framework, we provide convergence theoretical guarantees and rates. We apply our findings on simple GAN problems obtaining promising numerical results. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2425463845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425463845</sourcerecordid><originalsourceid>FETCH-proquest_journals_24254638453</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdFTwOLwtJyW1KDMxTyEpMTm7pAhIZOalK-SmlmTkpyik5Rcp5Gbm6eYmVigk5qVA2Jl5CgVF-Uk5qbnFPAysaYk5xam8UJqbQdnNNcTZQxeooLA0tbgkPiu_tCgPKBVvZGJkamJmbGFiakycKgCi0jms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425463845</pqid></control><display><type>article</type><title>A Hölderian backtracking method for min-max and min-min problems</title><source>Publicly Available Content Database</source><creator>Bolte, Jérôme ; Glaudin, Lilian ; Pauwels, Edouard ; Serrurier, Mathieu</creator><creatorcontrib>Bolte, Jérôme ; Glaudin, Lilian ; Pauwels, Edouard ; Serrurier, Mathieu</creatorcontrib><description>We present a new algorithm to solve min-max or min-min problems out of the convex world. We use rigidity assumptions, ubiquitous in learning, making our method applicable to many optimization problems. Our approach takes advantage of hidden regularity properties and allows us to devise a simple algorithm of ridge type. An original feature of our method is to come with automatic step size adaptation which departs from the usual overly cautious backtracking methods. In a general framework, we provide convergence theoretical guarantees and rates. We apply our findings on simple GAN problems obtaining promising numerical results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Optimization</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2425463845?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Bolte, Jérôme</creatorcontrib><creatorcontrib>Glaudin, Lilian</creatorcontrib><creatorcontrib>Pauwels, Edouard</creatorcontrib><creatorcontrib>Serrurier, Mathieu</creatorcontrib><title>A Hölderian backtracking method for min-max and min-min problems</title><title>arXiv.org</title><description>We present a new algorithm to solve min-max or min-min problems out of the convex world. We use rigidity assumptions, ubiquitous in learning, making our method applicable to many optimization problems. Our approach takes advantage of hidden regularity properties and allows us to devise a simple algorithm of ridge type. An original feature of our method is to come with automatic step size adaptation which departs from the usual overly cautious backtracking methods. In a general framework, we provide convergence theoretical guarantees and rates. We apply our findings on simple GAN problems obtaining promising numerical results.</description><subject>Algorithms</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdFTwOLwtJyW1KDMxTyEpMTm7pAhIZOalK-SmlmTkpyik5Rcp5Gbm6eYmVigk5qVA2Jl5CgVF-Uk5qbnFPAysaYk5xam8UJqbQdnNNcTZQxeooLA0tbgkPiu_tCgPKBVvZGJkamJmbGFiakycKgCi0jms</recordid><startdate>20200717</startdate><enddate>20200717</enddate><creator>Bolte, Jérôme</creator><creator>Glaudin, Lilian</creator><creator>Pauwels, Edouard</creator><creator>Serrurier, Mathieu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200717</creationdate><title>A Hölderian backtracking method for min-max and min-min problems</title><author>Bolte, Jérôme ; Glaudin, Lilian ; Pauwels, Edouard ; Serrurier, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24254638453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Bolte, Jérôme</creatorcontrib><creatorcontrib>Glaudin, Lilian</creatorcontrib><creatorcontrib>Pauwels, Edouard</creatorcontrib><creatorcontrib>Serrurier, Mathieu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolte, Jérôme</au><au>Glaudin, Lilian</au><au>Pauwels, Edouard</au><au>Serrurier, Mathieu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Hölderian backtracking method for min-max and min-min problems</atitle><jtitle>arXiv.org</jtitle><date>2020-07-17</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present a new algorithm to solve min-max or min-min problems out of the convex world. We use rigidity assumptions, ubiquitous in learning, making our method applicable to many optimization problems. Our approach takes advantage of hidden regularity properties and allows us to devise a simple algorithm of ridge type. An original feature of our method is to come with automatic step size adaptation which departs from the usual overly cautious backtracking methods. In a general framework, we provide convergence theoretical guarantees and rates. We apply our findings on simple GAN problems obtaining promising numerical results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2425463845 |
source | Publicly Available Content Database |
subjects | Algorithms Optimization |
title | A Hölderian backtracking method for min-max and min-min problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20H%C3%B6lderian%20backtracking%20method%20for%20min-max%20and%20min-min%20problems&rft.jtitle=arXiv.org&rft.au=Bolte,%20J%C3%A9r%C3%B4me&rft.date=2020-07-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2425463845%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24254638453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425463845&rft_id=info:pmid/&rfr_iscdi=true |