Loading…

Sensing Surface Contamination of Metal Oxide Surge Arrester Through Resistive Leakage Current Signal Analysis by Mathematical Morphology

This paper presents an advanced method of sensing surface contamination of polymeric housed Metal Oxide Surge Arrester through resistive leakage current signal analysis. Surface condition of polymeric housed MOSAs often gets contaminated due to accumulation of dust and other pollutant. Accumulated p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2020-08, Vol.20 (16), p.9460-9468
Main Authors: Das, Arup Kumar, Ghosh, Banibrata, Dalai, Sovan, Chatterjee, Biswendu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9468
container_issue 16
container_start_page 9460
container_title IEEE sensors journal
container_volume 20
creator Das, Arup Kumar
Ghosh, Banibrata
Dalai, Sovan
Chatterjee, Biswendu
description This paper presents an advanced method of sensing surface contamination of polymeric housed Metal Oxide Surge Arrester through resistive leakage current signal analysis. Surface condition of polymeric housed MOSAs often gets contaminated due to accumulation of dust and other pollutant. Accumulated pollutants can degrade the condition of the arrester due to overheating which may lead to explosion. Therefore, reliability of power system may get affected due to failure of MOSAs. Resistive leakage current analysis of MOSA is one of the conventional method for sensing surface contamination of surge arrester. In this article, Mathematical Morphology operator has been introduced to extract various features from the resistive part of leakage current signals measured at different surface contamination level. Further, the extracted features have been trained through Gaussian Naïve Bayes (GNB) and surface contamination level of MOSA has been identified through this classifier. Result shows that proposed technique provides satisfactory outcomes regarding condition monitoring of MOSA at different surface contamination level which in turn enhances the reliability of system. The proposed technique is generic in nature and well suited for any other similar kind of applications.
doi_str_mv 10.1109/JSEN.2020.2986677
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2425612299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9060819</ieee_id><sourcerecordid>2425612299</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-2586c123dd5b055a28243b1266064c3c57d14e7ef83db56d736820d07beb5c8a3</originalsourceid><addsrcrecordid>eNotz0tLw0AQAOAgCtbqDxAvC55T95F95FiCT1oLpoK3sEkmydY2WzeJmH_gz3ZLvcwMzDfDTBBcEzwjBMd3L-n964xiimc0VkJIeRJMCOcqJDJSp4ea4TBi8uM8uOi6DcYkllxOgt8U2s60NUoHV-kCUGLbXu9Mq3tjW2QrtIReb9Hqx5RwQDWguXPQ9eDQunF2qBv0Bp3pevMNaAH6U3uSDN60PUpN3frpuQ-jNygf0VL3Dez8-sI3ltbtG7u19XgZnFV628HVf54G7w_36-QpXKwen5P5IjQUsz6kXImCUFaWPMeca6poxHJChcAiKljBZUkikFApVuZclJIJRXGJZQ45L5Rm0-D2uHfv7Nfg_8g2dnD-vi6jEeWCUBrHXt0clQGAbO_MTrsxi7HAisTsD8Lebs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425612299</pqid></control><display><type>article</type><title>Sensing Surface Contamination of Metal Oxide Surge Arrester Through Resistive Leakage Current Signal Analysis by Mathematical Morphology</title><source>IEEE Xplore (Online service)</source><creator>Das, Arup Kumar ; Ghosh, Banibrata ; Dalai, Sovan ; Chatterjee, Biswendu</creator><creatorcontrib>Das, Arup Kumar ; Ghosh, Banibrata ; Dalai, Sovan ; Chatterjee, Biswendu</creatorcontrib><description>This paper presents an advanced method of sensing surface contamination of polymeric housed Metal Oxide Surge Arrester through resistive leakage current signal analysis. Surface condition of polymeric housed MOSAs often gets contaminated due to accumulation of dust and other pollutant. Accumulated pollutants can degrade the condition of the arrester due to overheating which may lead to explosion. Therefore, reliability of power system may get affected due to failure of MOSAs. Resistive leakage current analysis of MOSA is one of the conventional method for sensing surface contamination of surge arrester. In this article, Mathematical Morphology operator has been introduced to extract various features from the resistive part of leakage current signals measured at different surface contamination level. Further, the extracted features have been trained through Gaussian Naïve Bayes (GNB) and surface contamination level of MOSA has been identified through this classifier. Result shows that proposed technique provides satisfactory outcomes regarding condition monitoring of MOSA at different surface contamination level which in turn enhances the reliability of system. The proposed technique is generic in nature and well suited for any other similar kind of applications.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.2986677</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arresters ; Condition monitoring ; Contamination ; Detection ; Failure analysis ; Feature extraction ; Gaussian Naïve Bayes ; Leakage current ; Leakage currents ; Mathematical analysis ; Mathematical morphology ; mathematicalmorphology ; Metal oxide surge arrester ; Metal oxides ; Morphology ; Overheating ; Pollutants ; Pollution measurement ; Signal analysis ; Surface contamination ; Surface morphology ; Surge arresters ; Surges ; System reliability</subject><ispartof>IEEE sensors journal, 2020-08, Vol.20 (16), p.9460-9468</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5991-1237 ; 0000-0001-5367-2466 ; 0000-0001-9817-0435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9060819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Das, Arup Kumar</creatorcontrib><creatorcontrib>Ghosh, Banibrata</creatorcontrib><creatorcontrib>Dalai, Sovan</creatorcontrib><creatorcontrib>Chatterjee, Biswendu</creatorcontrib><title>Sensing Surface Contamination of Metal Oxide Surge Arrester Through Resistive Leakage Current Signal Analysis by Mathematical Morphology</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper presents an advanced method of sensing surface contamination of polymeric housed Metal Oxide Surge Arrester through resistive leakage current signal analysis. Surface condition of polymeric housed MOSAs often gets contaminated due to accumulation of dust and other pollutant. Accumulated pollutants can degrade the condition of the arrester due to overheating which may lead to explosion. Therefore, reliability of power system may get affected due to failure of MOSAs. Resistive leakage current analysis of MOSA is one of the conventional method for sensing surface contamination of surge arrester. In this article, Mathematical Morphology operator has been introduced to extract various features from the resistive part of leakage current signals measured at different surface contamination level. Further, the extracted features have been trained through Gaussian Naïve Bayes (GNB) and surface contamination level of MOSA has been identified through this classifier. Result shows that proposed technique provides satisfactory outcomes regarding condition monitoring of MOSA at different surface contamination level which in turn enhances the reliability of system. The proposed technique is generic in nature and well suited for any other similar kind of applications.</description><subject>Arresters</subject><subject>Condition monitoring</subject><subject>Contamination</subject><subject>Detection</subject><subject>Failure analysis</subject><subject>Feature extraction</subject><subject>Gaussian Naïve Bayes</subject><subject>Leakage current</subject><subject>Leakage currents</subject><subject>Mathematical analysis</subject><subject>Mathematical morphology</subject><subject>mathematicalmorphology</subject><subject>Metal oxide surge arrester</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Overheating</subject><subject>Pollutants</subject><subject>Pollution measurement</subject><subject>Signal analysis</subject><subject>Surface contamination</subject><subject>Surface morphology</subject><subject>Surge arresters</subject><subject>Surges</subject><subject>System reliability</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotz0tLw0AQAOAgCtbqDxAvC55T95F95FiCT1oLpoK3sEkmydY2WzeJmH_gz3ZLvcwMzDfDTBBcEzwjBMd3L-n964xiimc0VkJIeRJMCOcqJDJSp4ea4TBi8uM8uOi6DcYkllxOgt8U2s60NUoHV-kCUGLbXu9Mq3tjW2QrtIReb9Hqx5RwQDWguXPQ9eDQunF2qBv0Bp3pevMNaAH6U3uSDN60PUpN3frpuQ-jNygf0VL3Dez8-sI3ltbtG7u19XgZnFV628HVf54G7w_36-QpXKwen5P5IjQUsz6kXImCUFaWPMeca6poxHJChcAiKljBZUkikFApVuZclJIJRXGJZQ45L5Rm0-D2uHfv7Nfg_8g2dnD-vi6jEeWCUBrHXt0clQGAbO_MTrsxi7HAisTsD8Lebs4</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Das, Arup Kumar</creator><creator>Ghosh, Banibrata</creator><creator>Dalai, Sovan</creator><creator>Chatterjee, Biswendu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5991-1237</orcidid><orcidid>https://orcid.org/0000-0001-5367-2466</orcidid><orcidid>https://orcid.org/0000-0001-9817-0435</orcidid></search><sort><creationdate>20200815</creationdate><title>Sensing Surface Contamination of Metal Oxide Surge Arrester Through Resistive Leakage Current Signal Analysis by Mathematical Morphology</title><author>Das, Arup Kumar ; Ghosh, Banibrata ; Dalai, Sovan ; Chatterjee, Biswendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-2586c123dd5b055a28243b1266064c3c57d14e7ef83db56d736820d07beb5c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arresters</topic><topic>Condition monitoring</topic><topic>Contamination</topic><topic>Detection</topic><topic>Failure analysis</topic><topic>Feature extraction</topic><topic>Gaussian Naïve Bayes</topic><topic>Leakage current</topic><topic>Leakage currents</topic><topic>Mathematical analysis</topic><topic>Mathematical morphology</topic><topic>mathematicalmorphology</topic><topic>Metal oxide surge arrester</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Overheating</topic><topic>Pollutants</topic><topic>Pollution measurement</topic><topic>Signal analysis</topic><topic>Surface contamination</topic><topic>Surface morphology</topic><topic>Surge arresters</topic><topic>Surges</topic><topic>System reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Arup Kumar</creatorcontrib><creatorcontrib>Ghosh, Banibrata</creatorcontrib><creatorcontrib>Dalai, Sovan</creatorcontrib><creatorcontrib>Chatterjee, Biswendu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Arup Kumar</au><au>Ghosh, Banibrata</au><au>Dalai, Sovan</au><au>Chatterjee, Biswendu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensing Surface Contamination of Metal Oxide Surge Arrester Through Resistive Leakage Current Signal Analysis by Mathematical Morphology</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-08-15</date><risdate>2020</risdate><volume>20</volume><issue>16</issue><spage>9460</spage><epage>9468</epage><pages>9460-9468</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper presents an advanced method of sensing surface contamination of polymeric housed Metal Oxide Surge Arrester through resistive leakage current signal analysis. Surface condition of polymeric housed MOSAs often gets contaminated due to accumulation of dust and other pollutant. Accumulated pollutants can degrade the condition of the arrester due to overheating which may lead to explosion. Therefore, reliability of power system may get affected due to failure of MOSAs. Resistive leakage current analysis of MOSA is one of the conventional method for sensing surface contamination of surge arrester. In this article, Mathematical Morphology operator has been introduced to extract various features from the resistive part of leakage current signals measured at different surface contamination level. Further, the extracted features have been trained through Gaussian Naïve Bayes (GNB) and surface contamination level of MOSA has been identified through this classifier. Result shows that proposed technique provides satisfactory outcomes regarding condition monitoring of MOSA at different surface contamination level which in turn enhances the reliability of system. The proposed technique is generic in nature and well suited for any other similar kind of applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.2986677</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5991-1237</orcidid><orcidid>https://orcid.org/0000-0001-5367-2466</orcidid><orcidid>https://orcid.org/0000-0001-9817-0435</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-08, Vol.20 (16), p.9460-9468
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2425612299
source IEEE Xplore (Online service)
subjects Arresters
Condition monitoring
Contamination
Detection
Failure analysis
Feature extraction
Gaussian Naïve Bayes
Leakage current
Leakage currents
Mathematical analysis
Mathematical morphology
mathematicalmorphology
Metal oxide surge arrester
Metal oxides
Morphology
Overheating
Pollutants
Pollution measurement
Signal analysis
Surface contamination
Surface morphology
Surge arresters
Surges
System reliability
title Sensing Surface Contamination of Metal Oxide Surge Arrester Through Resistive Leakage Current Signal Analysis by Mathematical Morphology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensing%20Surface%20Contamination%20of%20Metal%20Oxide%20Surge%20Arrester%20Through%20Resistive%20Leakage%20Current%20Signal%20Analysis%20by%20Mathematical%20Morphology&rft.jtitle=IEEE%20sensors%20journal&rft.au=Das,%20Arup%20Kumar&rft.date=2020-08-15&rft.volume=20&rft.issue=16&rft.spage=9460&rft.epage=9468&rft.pages=9460-9468&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.2986677&rft_dat=%3Cproquest_ieee_%3E2425612299%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-2586c123dd5b055a28243b1266064c3c57d14e7ef83db56d736820d07beb5c8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425612299&rft_id=info:pmid/&rft_ieee_id=9060819&rfr_iscdi=true